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ABSTRACT

This paper develops an efficient data clustering technique by

transforming and compressing the measurement data to a low-

dimensional feature matrix, based on which, matrix factoriza-

tion techniques can be applied to extract the key parameters

for data clustering. For the application of wireless propaga-

tion map reconstruction, a theoretical result is developed to

justify that the feature matrix is a composite of several uni-

modal matrices, each containing key parameters for an indi-

vidual propagation region. As a result, instead of iterating

withN data points at each step, the proposed scheme provides

a low complexity online solution for data clustering based on

the feature matrix with dimension much smaller than N .

Index Terms— Clustering, matrix factorization, uni-

modal, nonparametric estimation

1. INTRODUCTION

This paper studies the problem of predicting the propagation

from an autonomous vehicle to a static ground device in an

unknown environment. As the terrain structure may block

the propagation signal and divide the activity area of the au-

tonomous vehicle into several propagation regions, it is cru-

cial to build a propagation map that both recovers the pattern

of the propagation region and makes a good prediction on the

propagation channel gain. In general, propagation map re-

construction finds applications in various domains, such as

sensor deployment for target monitoring in obstructive envi-

ronment, relay placement for establishing dynamic communi-

cation infrastructure [1–3], and millimeter-wave communica-

tion, which desires a reliable line-of-sight (LOS) link [4–6].

There is some related work using machine learning tech-

niques for the propagation map prediction, such as kernel re-

gression for power map learning [7], support vector regres-

sion [8] and artificial neural network methods for path loss

prediction [9]. These approaches are quite general and thus

did not exploit the geometric characteristics of the propaga-

tion environment. As a result, they are not optimized for
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recovering the propagation pattern. The approach in [9] re-

quired labeled training data with manually classified propa-

gation scenarios. Our prior work [10, 11] developed a seg-

mented regression approach based on perfect knowledge of

the ground terminal position. Realizing such a condition is

challenging in practice.1 More broadly, in [12,13], a stochas-

tic propagation map is learnt from a stochastic terrain model,

which does not capture the actual propagation conditions.

This paper focuses on the problem of data clustering for

several propagation scenarios based on a number of energy

measurements taken randomly at different locations by an

autonomous vehicle. Neither the terrain structure, the sig-

nal characteristics, nor the location of the ground device are

known. Such a clustering problem is important because once

the propagation scenarios are identified, classical regression

techniques or other supervised learning techniques can be ap-

plied to learn and reconstruct the propagation map of the en-

tire area. However, this problem is also challenging, as a

brute-force solution from a classical regression approach may

get stuck at a local optimum. Mathematically, it is a joint

clustering (a combinatorial problem) and nonlinear regression

problem.

In this paper, we develop an efficient data clustering tech-

nique that maps the measurement data to a low-dimensional

feature matrix, where each entry corresponds to an estimate

of a set of propagation parameters, and the value of the en-

try corresponds to the likelihood of the estimate. We prove

that under some mild conditions, the feature matrix is a com-

posite of several unimodal matrices. The peak location of

each of those unimodal matrices corresponds to a close ap-

proximation of the propagation parameters in a corresponding

propagation region. With this result in hand, our recent work

on unimodal-constrained matrix factorization techniques [14]

can be applied to extract the local peaks of each composite

matrix, following which, the data clustering result can be eas-

ily obtained. As a result, instead of performing iterations to

re-cluster N data points at each step as occurs in existing

work, we employ a one-off pre-processing step to transform

and compress the data into an M ×M matrix, where the ma-

1In practical cellular systems, for example, the network operator does not

have direct access to the GPS data from a mobile.



trix stores sufficient information for data clustering. There-

fore, the proposed method provides an efficient solution for

online implementation, where N may grow unboundedly as

sensors keep collecting measurements. Moreover, as the pro-

posed data identification and clustering algorithm is based on

simple signal characteristics, i.e., aggregate energy rather than

a multi-path power-delay profile, the method can be imple-

mented using low-cost sensors.

2. SYSTEM MODEL

We assume that an autonomous vehicle V moves on a 2D

plane A that is perpendicularly away from a static device U
with distance H ≥ 0. Denote x ∈ R

2 as the position of V on

the 2D plane A and xu ∈ R
2 as the position of U projected on

A. The distance between V and U is defined as d(x,xu) =
√

‖x− xu‖2 +H2. For simplicity, the dependency on xu is

omitted as it is fixed throughout the paper, i.e., we denote

d(x) = d(x,xu).

2.1. Propagation Map

Suppose that there are objects surrounding the device U , and

correspondingly, forming several disjoint propagation regions

for the signals between V and U . Without loss of generality

(w.l.o.g.), assume that there are K = 2 propagation regions.

Specifically, denote D1 ⊆ A as the set of autonomous vehicle

positions x such that there is a LOS link between V and U ,

and D2 = A\D1 as the set of positions x such that the LOS

link is blocked.

In addition, assume that the propagation regions are reg-

ular, i.e., for any x ∈ Dk and 0 ≤ ρ ≤ 1, it holds that

xu + ρ(x − xu) ∈ Dj , j ≤ k. The regularity condition cap-

tures the following physical characteristic: when V moves

towards U , it only improves the propagation scenario as the

number of objects that would block the signal decreases. On

the other hand, when V moves aways fromU , the propagation

condition deteriorates as it is likely to lose the LOS link.

The propagation map is defined as

γ(x) =

K
∑

k=1

hk(d(x))I{x ∈ Dk} (1)

for every autonomous vehicle position x ∈ A, where hk(d)
is the propagation function in terms of distance d in the kth

region.

Assume that the propagation functions hk(d) follow a

general parametric form h(d;α
(k)
1 , α

(k)
2 ) = α

(k)
1 p1(x) +

α
(k)
2 p2(x), k = 1, 2, where pk(x) are functions from a

specific application scenario. For example, in radio sig-

nal propagation, a popular model is h(d;α
(k)
1 , α

(k)
2 ) =

α
(k)
1 log10(d(x)) + α

(k)
2 , where p1(x) = log10 d(x) and

p2(x) = 1. For underwater acoustic signals, one can consider

the model h(d;α
(k)
1 , α

(k)
2 ) = 1.5 log10(d) + α

(k)
1 d + α

(k)
2 ,

where p1(x) = d(x) and p2(x) = 1. For easy elaboration,

we consider p2(x) ≡ 1 in this paper.

2.2. Measurement Model

Note that neither the parameters α
(k) = (α

(k)
1 , α

(k)
2 ) of the

functions hk(d), the propagation regions Dk, nor the device

position xu are known to the system. To estimate the propaga-

tion map γ(x), x ∈ A, the autonomous vehicle V randomly

samples N locations xl, where the corresponding the mea-

surements yl are modeled as

yl = γ(xl) + nl

where nl is a zero-mean random variable with variance σ2 =
∑K

k=1 σ
2
kI{x ∈ Dk} depending on the propagation regions.

The ultimate goal of this paper is to reconstruct the propaga-

tion map γ̂(x) based on the dataset {xl, yl}.

3. CLUSTERING VIA MATRIX FACTORIZATION

Let x̂u = xm̂ be an initial estimate of the position of the

device U , where m̂ = argmaxl{yl}, i.e., the measure-

ment location that observes the highest energy. The esti-

mated distance between V and U is thus d̂(x) , d(x, x̂u) =
√

‖x− x̂u‖2 +H2. In addition, let a be an estimate of the

parameter α = (α1, α2) in the propagation model h(d;α).
As a result, a predicted propagation channel gain at position

x is given by γ̂(x) = h(d̂(x); a) = a1p̂1(x) + a2, where

p̂1(x) is a function based on the estimated distance d̂(x).

3.1. Matrix Model for the Clustering Problem

Denote the prediction error on the training data {xl, yl} as

△l(a1, a2) = yl − h(d̂(xl); a)

= δl(a1, a2) + nl

in which, δl(a1, a2) , (α1 − a1)p1(x) + (α2 − a2) +
a1(p1(x) − p̂1(x)), where the first two terms represent the

prediction error due to parameter estimation, and the third

term represents the bias due to localization error on the de-

vice U .

To formulate a data clustering problem, define a value

function as

v(a) =

N
∑

l=1

L(△l(a1, a2)) (2)

in which, the similarity metric L(z) is chosen as L(z) =

e−λz2

, where the choice of parameter λ > 0 will become

clear in Proposition 1 below. In the special case of one prop-

agation region K = 1 (LOS link exists everywhere), one

can obtain the best parameter a by solving a least-squares re-

gression problem using L(z) = −z2. However, the case for



K ≥ 2 regions is highly non-trivial, especially when the bias

term a1(p1(x)− p̂1(x)) appears in δl(a1, a2).
Let Ct = {−∞ < ct1 < ct2 < · · · < ctMt

< ∞}, t =
1, 2, be two sequences of candidate values to approximate the

parameters α
(k)
1 and α

(k)
2 , for k = 1, 2. Construct a feature

matrix V ∈ R
M1×M2 by specifying its (i, j)th entry as

Vij =

N
∑

l=1

L(△l(c1i, c2j)). (3)

Intuitively, the entry Vij has a large value if the pair (c1i, c2j)

closely approximates the unknown parameters (α
(k)
1 , α

(k)
2 )

for either k = 1, 2.

To obtain an analytical insight on the feature matrix V,

consider the (unknown) subset of data Lk = {l : I{xl ∈
Dk} = 1} that belongs to the kth propagation region. Sup-

pose that a matrix V
(k) ∈ R

M1×M2 is formed by assigning

its (i, j)th entry with V
(k)
ij =

∑

l∈Lk
L(△l(c1i, c2j)). It turns

out that the matrixV(k) has a unimodal property that is shown

as follows.

A vector u = (u1, u2, . . . , uM ) is unimodal if it is non-

negative and has a single peak, i.e., 0 ≤ u1 ≤ u2 ≤ · · · ≤ us

and us ≥ us+1 ≥ · · · ≥ uM for some integer 1 ≤ s ≤ M . A

matrix is unimodal if all its row vectors and column vectors

are unimodal. With these notions, we establish the following

result.

Proposition 1 (Unimodality). Suppose that the distribution

of z = p1(x) has a non-negative and bounded support, where

x is a random variable of the position distributed over Dk. In

addition, assume that the measurement noise is Gaussian dis-

tributed. Then, under a large data set Lk and a small enough

parameter λ > 0 in (2), the matrix V
(k) is unimodal.

Proof. See the appendix.

It has been shown in [14] that if a matrix is unimodal, then

its dominant left and right singular vectors are also unimodal,

and their peaks appear at the locations that approximate the

underlined parameters to be estimated. Proposition 1 sug-

gests that one may choose a not-so-large parameter λ, such

that V(k) are unimodal so that their peaks appear at the desire

locations approximating (α
(k)
1 , α

(k)
2 ). On the other hand, one

may choose a not-so-small parameter λ, such that the data

points l ∈ Lk have negligible values outside the neighbor-

hood of the peak of the matrix V
(k).

As a result, the feature matrix V can be modeled as

V = γ1u1w
T
1 + γ2u2w

T
2 +N (4)

where γ1, γ2 > 0, ukw
T
k are rank-1 approximations of V(k),

and the vectors uk and wk are unit-normed signature vec-

tors. Denote m1 and m2 as the peak positions of uk and wk,

respectively. Then, we obtain the estimates α̂
(k)
1 = c1,m1

and α̂
(k)
2 = c2,m2

. The matrix N captures the residual noise,

which is believed to be small under a good choice of parame-

ter λ and the sets of sequences Ct, t = 1, 2.

3.2. Matrix Factorization

The signature vectors uk and wk, k = 1, 2, can be obtained

from the solutions U = [u1,u2] and W = [w1,w2] of the

following problem

P : minimize
U,W

‖S � (V −UW
T)‖2F

subject to U ∈ UM1×2,W ∈ UM2×2

where UMk×2 denotes the set of Mk × 2 matrices with uni-

modal columns; S is an M1×M2 indicator matrix with Sij =
1 if the (i, j)th entry of V is available, and Sij = 0, other-

wise. The symbol � denotes the Hadamard product. Other

formulations and solvers, such as the lp-norm minimization

[15, 16], can also be applied.

Problem P can be solved using projected gradient meth-

ods [14] and the parameter estimates α̂
(k)
t , t, k = 1, 2, are

obtained from peak localization [14] of uk and wk.

3.3. Data Clustering and Localization

From (3) and (4), the signature vectors w1 and w2 capture the

empirical distribution of L(y−h(d̂(x); α̂(k))). Therefore,w1

and w2 can be used for non-parametric hypothesis testing for

data clustering.

Specifically, let w1(c) and w2(c) be a linear interpolation

of w1 and w2, respectively, over c ∈ (−∞,∞). Then, a data

point {xl, yl} is clustered to region D1 if

w1

(

L
(

yl−h(d̂(xl); α̂
(1))

)

)

> w2

(

L
(

yl−h(d̂(xl); α̂
(2))

)

)

(5)

and it is clustered to region D2, otherwise.

3.4. Comparison with Classical Methods

The joint data clustering and parameter regression problem

can also be solved by formulating a maximum likelihood esti-

mation problem and obtaining the solution using expectation-

maximization (EM) algorithms with randomized initializa-

tions. However, each EM iteration needs to compute a new

clustering for all N data points, whereN is usually very large.

In the proposed technique, the clustering is performed via fac-

torizing a M1 × M2 feature matrix that compresses all the

data points, and the complexity scales with M2
1 +M2

2 which

is much smaller than N . The data clustering that involves all

N data points is performed only twice (before and after fac-

torizing the feature matrix V).

4. NUMERICAL RESULTS

Consider a unmanned aerial vehicle (UAV) flies in a 600 [m]

× 600 [m] area with 50 meter height above ground. It mea-
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Fig. 1. Reconstruction of the noise corrupted radio map in (a) from

100 random samples (white crosses): The proposed method recovers

the propagation details in (c), while a matrix completion baseline

fails to recover the propagation structure, shown in (d).

sures the received signal from a ground device with unknown

position, and the received signal energy y in dB at UAV po-

sition x is modeled as y = α1 log10 d(x) + α2 + n, where

α
(1) = (−22,−28), n ∼ N (0, 1), if the link is in LOS

condition, and α
(2) = (−36,−22), n ∼ N (0, 82) other-

wise. The full propagation map and a random sample pattern

with 100 measurements are shown in Fig. 1 (a). The corre-

sponding feature matrix in (3) is demonstrated in Fig. 1 (b).

The clustering ẑl ∈ {1, 2} of the sample data {xl, yl, l =
1, 2, . . . , 100} is obtained by solving P followed by peak lo-

calization of the signature vectors in (4) and hypothesis test-

ing in (5).

For propagation map reconstruction, we employ a k-

nearest neighbor (KNN) algorithm to classify every position

x to one of the two propagation regions, Z(x) ∈ {1, 2},

based on the clustered dataset {xl, ẑl}. We then reconstruct

the propagation map using γ̂(x) = α̂
(k)
1 log10 d̂(x) + α̂

(k)
2 ,

k = Z(x). As a benchmark, a baseline scheme first arranges

the measurements to a 16 × 16 matrix Y, and completes the

matrix by minimizing the nuclear norm of a matrix variable

X subject to
∑

(i,j)∈Ω |Xij − Yij |2 ≤ ǫ2, where Ω is the set

of entries in Y that are observed from measurement samples

and ǫ is chosen to minimize the reconstruction error (i.e., a

genius-aided approach) [17]. Fig. 1 (c) and (d) show that the

proposed scheme succeeds in recovering the propagation pat-

tern while the baseline fails to do so due to large measurement

noise.

5. CONCLUSIONS

This paper developed an efficient data clustering technique

by transforming the measurement data to a feature matrix

with a focus on the application of propagation map recon-

struction. It was proven that under some mild conditions,

the feature matrix is a composite of several unimodal matri-

ces, each containing key parameters of an individual propaga-

tion region. With that, recent matrix factorization techniques

can be applied to extract the sets of propagation parameters

without processing the whole dataset. Numerical experiments

demonstrated that the proposed method succeeded in recover-

ing the propagation pattern, whereas, a naive matrix comple-

tion baseline failed to do so due to large measurement noise.

Appendix: Proof of Proposition 1

Ergodicity implies that 1
Nk

V
(k)
ij → Ex,n{L(△l(a1, a2))} in

probability, as Nk = |Lk| → ∞, where the expectation is

taken over both the measurement noise and random position

x in Dk. On the other hand,

v̄k(a1, a2) ,
1

Nk

∑

l∈Lk

E{L(△l(a1, a2))}

→ Ex,n{L(△l(a1, a2))} → 1

Nk

V
(k)
ij

in probability, where E{·} is taken over measurement noise

only. Lemma 1 below shows that v̄k(a1, a2) is concave, and

hence, there is a single local maximum over a1 (under a fixed

a2) and a single local maximum over a2 (under a fixed a1).
As V(k) is a discretization of v̄k(a1, a2) over grid points spec-

ified by the sets Ct, t = 1, 2, V(k) is unimodal.

Lemma 1 (Concavity). Under the same conditions in Propo-

sition 1, the function v̄k(a1, a2) , 1
Nk

E{∑l∈Lk
L(△l)} is

concave in a1 ∈ A1 and a2 ∈ A2, respectively, where A1 and

A2 are bounded intervals.

Proof. (Sketch) A computation on the expectation yields

v̄k(a1, a2) =
1

Nk
√
µ

∑

l∈Lk

exp
{

− λ0δl(a1, a2)
2
}

where µ = 2λσ2
k + 1 and λ0 = λ/µ. The second order

derivative is given by

∂2v̄k
∂a21

=
2

Nk
√
µ

∑

l∈Lk

e−λ0δ
2

l λ0p1(xl)
2
(

2λ0δ
2
l − 1)

which is negative, if δ2l < 1
2λ0

= 1
2λ + σ2

k , for all l ∈ Lk .

Note that δ2l is upper bounded with probability 1 due to the

assumption on the finite support of p1(x) and the finite in-

tervals A1 and A2. Therefore, there exists a small enough

λ > 0, such that the condition is satisfied for all data points.

Similar argument can be applied to ∂2v̄k
∂a2

2

< 0. With that, the

concavity result is proven.
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