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Abstract—This paper studies the optimal unmanned aerial
vehicle (UAV) placement problem for wireless networking. The
UAV operates as a flying wireless relay to provide coverage
extension for a base station (BS) and deliver capacity boost to
a user shadowed by obstacles. While existing methods rely on
statistical models for potential blockage of a direct propagation
link, we propose an approach capable of leveraging local terrain
information to offer performance guarantees. The proposed
method allows to strike the best trade-off between minimizing
propagation distances to ground terminals and discovering good
propagation conditions. The algorithm only requires several
propagation parameters, but it is capable to avoid deep prop-
agation shadowing and is proven to find the globally optimal
UAV position. Only a local exploration over the target area is
required, and the maximum length of search trajectory is linear
to the geographical scale. Hence, it lends itself to online search.
Significant throughput gains are found when compared to other
positioning approaches based on statistical propagation models.

I. INTRODUCTION

One significant challenge for wireless communication net-

works is the rapid increase of demand for high data rate

and low latency wireless service. As a promising solution to

future communication networks, substantial attention has been

brought on the exploitation of UAVs as flying relays to connect

BSs with the users in communication outage [1]–[7].

In UAV relaying over a dense urban environment, a fun-

damental challenge is the shadowing at the user side, where

the degree of obstruction depends on the geographical envi-

ronment. For example, the link between a UAV and a user

may be in deep shadow when the UAV is located at the

east side of a building, whereas, the propagation condition

may be significantly improved when the UAV moves to the

north side. It is difficult to know such fine-grained propagation

condition prior to physically flying a UAV to a target position

for assessment. Existing techniques that model the possible

obstruction include specifying a larger path loss exponent,

adding additional power loss, and constructing a random

variable that describes the statistics of the shadowing. How-

ever, these models still over-simplify the actual propagation,
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because they implicitly assume that the degree of obstruction

is homogeneous everywhere, meaning that the path loss is

statistically the same everywhere given the same propagation

distance (and elevation angle). Consequently, in a BS-UAV-

user relay network, these models would predict the best UAV

relay on the BS-user axis. In reality, however, a UAV may

find significantly better propagation condition off the BS-user

axis. We will demonstrate that substantial performance gain

can be achieved when a more realistic fine-grained propagation

model is exploited. The main goal of the paper is to develop an

efficient and blockage-adaptive search strategy to explore fine-

grained propagation condition for the optimal UAV position.

A. Related Works

UAV optimization strategies are mainly developed based

on specific air-to-ground path loss models. In [8]–[16], the

path loss was modeled as a deterministic function of the

UAV-to-user distance, irrelevant to specific UAV positions.

Thanks to the simplicity of these distance-based models, [8]–

[12] developed solutions to UAV navigation problems, [13]

studied optimization strategies for multiple-input multiple-

output (MIMO) communications with UAVs with multiple

antennas, and [14] optimized the UAV position for cooperative

communications. The models used in [8]–[16] imply that the

path loss is the same under the same distance, but more

detailed research in [17], [18] suggests that air-to-ground

propagation should also depend on the elevation angle of the

UAV-user link.

To capture the dependency of obstruction on elevation

angles, in [17]–[21], the path loss was modeled as a random

variable of the propagation distance and the elevation angle.

Specifically, for the UAV position and coverage optimization

problems studied in [18]–[20], the path loss was modeled as

the average of the path loss under the LOS case and that

under the NLOS case, where the larger the elevation angle,

the higher the LOS probability. The work [21] considered

the shadowing statistics as a function of elevation angle. Yet,

these models implicitly assume that the degree of obstruction

is homogeneous for the same distance and elevation angle. In

practice, however, the degree of obstruction may vary from

one location to another.

B. Challenges and Our Contributions

Although it is theoretically possible to associate each UAV

and user position pair with a channel quality to capture the

variation of the terrain, it is almost infeasible to implement a

search strategy for the optimal UAV position. On one hand, it
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is time and energy prohibitive to maneuver a UAV for channel

quality assessment at every possible position. On the other

hand, even a 3D city map or a radio map can be constructed,

it is computationally expensive to exhaustively search of the

optimal UAV position. Moreover, the city map or radio map

may not be updated or reliable in practice.

Therefore, it is essential to develop an air-to-ground path

loss model to capture the variation of the terrain, and at the

same time, consists of some nice structure that can be exploited

to efficiently search for the optimal UAV position. Specifically,

two main issues are to be addressed:

• How to model the air-to-ground path loss for the com-

munication between ground users and low-altitude

UAVs? We need a model that not only captures the

various degrees of obstruction due to the complex terrain,

but also facilitates a low complexity search strategy for

optimal UAV positioning.

• How to plan an efficient search trajectory for the

optimal UAV position? We desire to build a search

path to find the globally optimal UAV position, while

the maximum search length is only linear to the radius

of the search area.

To answer these questions, we develop a nested segmented

air-to-ground propagation model, which, for each user posi-

tion, partitions the UAV search area into several segments,

and associates each segment with a path loss model, such

as LOS model, obstructed LOS model and non-line-of-sight

(NLOS) model. This feature matches with the observation

obtained from the experimental study in [22]. In addition,

we impose that as the UAV moves away from the user, it

can only enter propagation segments with a higher degree of

obstruction, as shown in Fig. 1 (b). Such a requirement is

consistent with many existing air-to-ground models from both

academia and industry [17], [23], where the lower the elevation

angle, the higher the probability for which the UAV-user link is

obstructed. Using such a model, we develop a shaded-contour-

exploration algorithm to search for the globally optimal UAV

position, and the algorithm only requires several propagation

parameters but not the entire radio map. We prove that global

optimum can be attained under a linear search trajectory.

While this idea was partially exploited in our preliminary

work [24], the work [24] focused only on the simplest case

of two propagation segments and the optimality proof was not

presented.

To summarize, the key contributions are made as follows:

• We propose a nested segmented propagation model to

capture the fine-grained degree of obstruction in air-to-

ground propagation.

• We develop a shaded-contour-exploration strategy to find

the optimal UAV position for a single user relay system,

with proven global optimality and linear search complex-

ity. Substantial performance gain for the case of clustered

multiple users is also numerically demonstrated.

• We perform numerical experiments to evaluate the per-

formance of the UAV relay system and compare with

existing approaches from existing models. Substantial

throughput gain is found from a simulated Manhattan-

like urban environment.

The rest of the paper is organized as follows. Section II

establishes the nested segmented air-to-ground propagation

model. Section III develops the search algorithm, and Section

IV establishes theoretical results on the global optimality. Nu-

merical results are demonstrated in Section V, and conclusions

are given in Section VI.

II. SYSTEM MODEL

Consider a cellular network in an urban environment, where

the BS is placed on rooftop or on a tower that is higher than all

the buildings. Due to the possibly dense distribution of build-

ings and vegetation, it is likely that signals transmitted from

the BS are significantly obstructed from users on street levels.

Consider to deploy a UAV as a flying relay that connects a

user with the BS. Assume that the UAV moves at a fixed

height Hd > Hb, where Hb is the height of the BS. Denote

the horizontal positions of the UAV, BS, and user, respectively,

as x,xb,xu ∈ R
2, and hence, (x, Hd), (xb, Hb), (xu, 0) ∈ R

3

are, respectively, the positions of the UAV, BS, and user in

3D.

Note that the signal from the UAV can still be obstructed

from the user due to local obstacles surrounding the user. On

the other hand, the UAV relay cannot move too close to the

user because it needs to balance the relay link with the BS.

To address this dilemma, the goal of this paper is to optimize

the horizontal position x ∈ R
2 for the UAV.

A. Channel Model for the UAV-BS Link

Define the channel as the deterministic power gain averaged

over small scale fading. The BS-UAV channel is modeled as

gb(x) = β0db(x)
−α0 (1)

where db(x) =
√
‖x− xb‖2 + (Hd −Hb)2 is the distance

from the UAV at (x, Hd) to the BS at (xb, Hb), and the

constants α0 > 1 and β0 > 0 are the classical path loss

exponent and offset parameters. Such a model corresponds to

the common scenario where the altitudes Hb of the BS and Hd

of the UAV are large enough such that there is always a LOS

condition for the BS-UAV link. We thus focus on modeling

the UAV-user link in Section II-B.

B. Channel Model for the UAV-user Link: A Nested Segmented

Model

In the classical large-scale fading channel model, the chan-

nel gain is modeled as GdB = b − a log10 d + ξ, where ξ is

a random variable to capture the shadowing effect. Inspired

by the geometry in the ray-tracing propagation modeling as

illustrated in Fig. 1, we propose to split GdB into several

components each associated with a set of parameters a, b and a

random component ξk for a specific degree of link obstruction.

Specifically, let D ⊆ R
2 be the domain of all possible UAV

positions x at constant altitude Hd. Consider a partition of D

into K disjoint segments D = D1(x̃u)∪D2(x̃u)∪· · ·∪DK(x̃u),
where Dk∩Dj = ∅, for k 6= j, and Dk(x̃u) denotes the region

of UAV locations for which the UAV maintains a degree-k
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(a) Horizontal view

(b) Nested segmented model

Figure 1. A geometric interpretation of the nested segmented model from (a)
horizontal view and (b) top view.

of LOS obstruction from the user. The proposed segmented

propagation model for GdB is specified as:

GdB(x) =

K∑

k=1

(
bk − ak log10 du(x) + ξk

)
I{x ∈ Dk} (2)

where du(x) =
√
‖x− xu‖2 + (Hd −Hu)2 is the distance

from the UAV located at (x, Hd) to the user at x̃u = (xu, Hu),
ak and bk are some parameters, and I{A} is an indicator func-

tion taking value 1 if condition A is satisfied, and 0 otherwise.

The random variable ξk captures the residual shadowing effect.

The segment parameters {αk, βk,Dk} are assumed to satisfy

the following conditions:

1) The propagation segment Dk exhibits a higher degree

of LOS obstruction than Dk−1, i.e., for k = 2, 3, . . . ,K
and any UAV position x,

bk − ak log10 du(x) < bk−1 − ak−1 log10 du(x)

or, in the linear scale representation,

βkdu(x)
−αk < βk−1du(x)

−αk−1 (3)

where bk = 10 log10 βk and ak = 10αk.

2) The propagation segments Dk are nested along any

directions from the user, i.e., for any x ∈ Dk and

0 ≤ ρ ≤ 1

xu + ρ(x− xu) ∈ Dj , for some j ≤ k. (4)

In other words, when the UAV moves towards the user,

the UAV-user channel tends to become always less

obstructed [25] as there are fewer obstacles in between

the UAV and the user, as illustrated in Fig. 1.

It is intuitive that if the parameters {αk, βk,Dk} are ob-

tained correctly, the variance of the residual term ξk can

be substantially reduced compared to that of the random

component ξ in the classical channel model. For example, the

variance of the shadowing in the LOS case is believed to be

much smaller than that in the combined LOS and NLOS case.

With such an insight, we focus on optimizing the UAV

network based on the average channel gain ḠdB(x) ,

E
{
GdB(x)

∣∣{Dk}
}

given the propagation segments, where

the expectation is taken over ξk. Therefore, assuming ξk
with zero mean, the deterministic channel in linear scale

10 log10 gu(x) , ḠdB(x) can be written as:

gu(x) =

K∑

k=1

βkdu(x)
−αkI{x ∈ Dk}. (5)

The problem of learning αk, βk, and the statistics of ξk from

measurement data has been partially attempted in [26], [27],

and it is not the focus of this paper. Here, we assume that αk,

βk, and the statistics of ξk are perfectly known, but we still

need to (partially) determine Dk, i.e., the boundaries shown in

Fig. 1 (b), to help search for the optimal UAV position. Note

that learning the entire Dk is much more difficult and time

consuming (or even prohibitive) than learning αk and βk. The

goal of this paper is to optimize the UAV position by only

partially exploring Dk.

C. Problem Formulation and Application Examples

Consider an objective cost function f(gu, gb) of the UAV-

user channel gain gu and the BS-UAV channel gain gb. Assume

that f(x, y) is a continuous and decreasing function in x and

y, respectively. A generic UAV positioning problem can be

formulated as follows1

P : minimize
x∈R2

f(gu(x), gb(x)).

The problem formulation P can capture many applications

for a variety of relay transmission strategies. Three examples

are illustrated as follows, where we choose some simple for-

mulations for easy demonstration of the proposed algorithm.

Consider that the transmission from the BS to the UAV is

modeled as yr =
√
Pbgbabs + nr, and that from the UAV

to the user is modeled as yu =
√
Puguausr + nu, where

nr, nu ∼ CN (0, 1) are the receive noise at the UAV relay and

the user, respectively, s, sr ∼ N (0, 1) are the transmit signals

from the BS and the UAV relay, respectively, and Pu and Pb

are transmission powers at the UAV and the BS, respectively.

The variables ab and au model the small scale fading on

the BS-UAV link and the UAV-user link, respectively. For

Rayleigh fading channels, |ab|2 and |au|2 are assumed to

follow exponential distribution with parameter (normalized as)

λ = 1.

1) Amplify-and-Forward: In amplify-and-forward relay-

ing, the UAV relays the information by transmitting sr =
yr/

√
Pbgb|ar|2 + 1, where the scaling factor

√
Pbgb|ar|2 + 1

1More generally, one can design the cost function f in terms of the UAV
position x to capture other system characteristics, such as antenna pattern and
effect of small-scale fading.
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Figure 2. (a) A map of a dense urban area, where the rectangles denote the building with colors representing their heights. (b) The simulated received power
map corresponding to every UAV position. (c) The simulated end-to-end capacity map.

is to normalize the transmission power at the UAV to be Pu.

It was shown in [28], [29] that the capacity of the relay chan-

nel is given by CAF = 1
2 log2

(
1 + q(Pbgb|ar|2, Pugu|au|2)

)
,

where q(x, y) , xy/(x + y + 1) and the parameter 1
2 is

to capture the fact that the information requires two time

slots to reach the user. The outage probability with respect

to a target data rate R was shown to be [29, Lemma 1]

P{CAF < R} ≈
(

1
Pbgb

+ 1
Pugu

)
(22R − 1)2 under high signal-

to-noise ratio (SNR), i.e., Pbgb, Pugu ≫ 1.2

Therefore, to minimize the outage probability of the relay

channel, the desired UAV position can be determined as the

solution to P with a cost function given as:

f(gu(x), gb(x)) :=
1

Pugu(x)
+

1

Pbgb(x)
. (6)

2) Decode-and-Forward: In decode-and-forward relaying,

the UAV fully decodes the message ŝ from the receive signal

yr, and transmits sr = ŝ to the user. The maximum capacity of

such a decode-and-forward relay system can be shown to be

CDF = 1
2 min{log2(1 +Pbgb|ab|2), log2(1 +Pugu|au|2)} [29],

[30]. Using Jensen’s inequality E{C(x)} ≤ C(E{x}) on a

concave function C(x), an upper bound of the ergodic capacity

E{CDF} is given by 1
2 min{log2(1 + Pbgb), log2(1 + Pugu)}.

The desired UAV position can be determined by maximizing

such a capacity bound. Equivalently, the problem P can be

specified by choosing the following cost function:

f(gu(x), gb(x)) := max
{
− log2

(
1 + Pbgb(x)

)
, (7)

− log2
(
1 + Pugu(x)

)}
.

A numerical example is given in Fig. 2, where Fig. 2 (b)

simulates the received power of the UAV-user signal with

respect to (w.r.t.) every UAV position under a segmented

propagation model with K = 2 segments. Fig. 2 (c) shows

the corresponding relay channel capacity from the BS to the

user via the UAV. It is not trivial to find the optimal UAV relay

position due to the irregular propagation pattern.

2The original problem in [29] considered a diversity scheme that combines
the signal from the relay and the signal from the BS. Such a strategy also
leads to problem P1 under high SNR.

3) Multiuser Clustered around a Hotspot: Suppose that

there are Nu users clustered around a hotspot centered at

xc with radius ru. Let f (i)(x) be the cost function taking

the form in (7) for the ith user located at position x
(i)
u .

Specifically, the UAV-user gain gu(x;x
(i)
u ) in (5) is computed

based on the user position xi. Consider to maximize the

sum rate − 1
Nu

∑Nu

i=1 f
(i)(x). One may consider to simplify

and approximate the cost function f̄(x) , 1
Nu

∑Nu

i=1 f
(i)(x)

by constructing a virtual user indexed as i = Nu + 1.

The virtual user is virtually placed at the hotspot center xc

(as a similar topological model discussed in [15]), and the

corresponding channel gain gu(x;xc) for is modeled using the

segmented log-distance model (5), except that the propagation

segment depends on the majority vote from the Nu actual

users. Specifically, the UAV position x belongs to the kth

propagation segment D̃k(xc) (for the virtual user), if the

majority UAV-user links (x,x
(i)
u ) belong to the kthe segment.

As a result, it is clear that the cost function f(x) , f (Nu+1)(x)
for the virtual user is a good approximation of the average cost
1
Nu

∑Nu

i=1 f
(i)(x) as long as the cluster radius ru is small.

While such an approximation is only suboptimal, in Section

V-B, we numerically demonstrate that our proposed strategy

that solves P still provide reasonably good performance

up to moderate cluster radius ru as compared to stochastic

optimization using simplified models.

III. ALGORITHM DESIGNS

In this section, we first derive some useful insights on the

optimal UAV positions, and then develop a polar representa-

tion tool. Based on that, we develop the search algorithm for

the optimal UAV position.

A. Properties of the Optimal UAV Position

Proposition 1. The optimal solution x
∗ to P is either on the

BS-user axis, or on the boundary between two propagation

segments.

Proof. Suppose there is a solution x which is strictly inside

a propagation segment Dk and is off the BS-user axis. Then

there exists a direction δ, such that for a sufficiently small

ǫ > 0, the new UAV position x+ǫδ decreases the distances to
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Figure 3. Illustration of a polar representation of the UAV position x.

both the user and the BS, while at the same time, x+ǫδ ∈ Dk.

From the nested segmented model (5) and also the UAV-BS

channel model (1), smaller distances du and db imply larger

channel gains gu and gb. Due to the monotonicity property of

the cost function f(gu, gb), larger channel gains yield a smaller

cost value, which implies that x is not the optimal solution.

By contradiction, the proposition is therefore confirmed.

However, it is still costly to search along the segment

boundaries because the boundaries may have complex shapes,

resulting in an unacceptably long trajectory (which could be

super-linear to the radius of the search area) for the UAV as

demonstrated in Fig. 2.

B. Polar Representation

To develop a more efficient search strategy, we transform

the problem into the one expressed over a polar coordinate

system.

Let ρ = ‖x − xu‖ be the ground projected distance from

the user at (xu, Hu) to the UAV at (x, Hd). Let θ ∈ (−π, π)
be the deviation angle from the user-to-BS direction to the

user-to-UAV direction as illustrated in Fig. 3. Denote u =
(u1, u2) , xb−xu

‖xb−xu‖
as the normalized user-to-BS direction.

The UAV position x ∈ R
2 can be equivalently expressed by

(ρ, θ) as

x(ρ, θ) = xu + ρM(θ)u (8)

where

M(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(9)

is a rotation matrix, and

θ = sign(z2u1 − z1u2) · arccos
(
z

T
u/ρ

)
(10)

in which z = (z1, z2) , x − xu, sign(x) = 1 if x > 0, and

sign(x) = −1, otherwise.

We now define an alternative expression for the cost func-

tion f(gu(x), gb(x)).

Definition 1 (Fictitious Segment Cost Function). For

x(ρ, θ) ∈ Dk, k = 1, 2, . . . ,K , the cost function

f(gu(x), gb(x)) can be written as

f(gu(x), gb(x)) = Fk(ρ, θ)

where

Fk(ρ, θ) , f
(
g(k)u (x(ρ, θ)), gb(x(ρ, θ))

)
(11)

and g
(k)
u (x) , βkdu(x)

−αk is the UAV-user channel in the kth

segment from the channel model (5).

As a result, the objective function in P is transformed into

the polar domain as F (ρ, θ) =
∑K

k=1 Fk(ρ, θ)I{x(ρ, θ) ∈
Dk}.

The motivation of working on the polar domain is that

by fixing the deviation θ, increasing ρ only worsens the

propagation condition according to the nested property (3)–(4).

In addition, the overall cost function F (ρ, θ) is discontinuous

because it contains the indicator functions, but the functions

Fk(ρ, θ) are continuous. As result, the functions Fk(ρ, θ) can

be used to derive search trajectories.

C. Search Trajectory Design for K = 2

The algorithm is better illustrated starting from the two

segment case, where D1 corresponds to the LOS segment and

D2 corresponds to the NLOS segment.
1) Search on the BS-user Axis: Let the UAV start from

the BS. It first moves towards the user until it finds two

critical positions (if they exist) x
0
k = x(ρ0k, 0), k = 1, 2,

which correspond to the points achieving the minimum cost

over the BS-user axis in the LOS region and NLOS region,

respectively. Specifically, the parameters ρ0k are the solutions

that minimize the fictitious cost Fk(ρ, 0) along the BS-user

axis x(ρ, 0) ∈ Dk, for k = 1, 2, in the two segment case.

For example, when the UAV is initially in the NLOS region,

it can move up to the LOS-NLOS boundary (see Section III-E

for a discussion on the detection method); with that, it can

solve for ρ01 and ρ02 to obtain the critical points x0
1 and x

0
2. On

the other hand, when the UAV is initially in the LOS region, it

can compute the critical position x
0
1 in the LOS region, while

x
0
2 does not exist.
2) Search on the Right Branch: Starting from the critical

position x
0
1 which minimizes the cost function on the LOS por-

tion of the BS-user axis, the UAV first moves to x(ρ01, δ/ρ
0
1),

i.e., a position just on the right of x0
1 in Fig. 4 (a), where δ is

a chosen step size. It then proceeds according to the following

two phases; at the same time, it keeps the track record of the

minimum cost value Fmin discovered and the corresponding

position x̂(ρ̂, θ̂) that achieves Fmin = F (ρ̂, θ̂):

• If the UAV is in the LOS region, it moves away from the

user. Specifically, it moves from x(ρ, θ) to x(ρ+ δ, θ).
• If the UAV is in the NLOS region, it moves in the

direction that maintains the same fictitious cost F1(ρ, θ)
as it were in the LOS region, i.e., contour of F1(ρ, θ) = C
specified by3

∂F1(ρ, θ)

∂ρ
dρ+

∂F1(ρ, θ)

∂θ
dθ = 0.

It can be shown that (Lemma 2 in Appendix C),

∂F1(ρ, θ)/∂θ 6= 0 for θ 6= 0. As a result from (8), we

have

dx = M(θ)udρ+ ρ
d

dθ
M(θ)u

(
− ∂F1

∂θ

)−1 ∂F1

∂ρ
dρ.

Thus, the UAV updates its position from x to x + ∆x,

where

∆x = γ
[
M(θ)u+ ρ

d

dθ
M(θ)u

(
− ∂F1

∂θ

)−1 ∂F1

∂ρ

]

3For mathematical completeness, the partial derivative is defined as
∂f(x0,y0)

∂x
= limt↑0

1
t
[f(x0 + t, y0)− f(x0, y0)] throughout this paper.
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Figure 4. (a) An example UAV search trajectory under two propagation
segment case in the polar domain. The dashed lines represent the contours
of the fictitious cost function F1(ρ, θ) = C. (b) A UAV search path (greed
lines) in the Euclidean domain for the topology in Fig. 2 (a). The curves in
other colors represent the contours of the cost function (7), and the purple
diamond represents the globally optimal position.

in which, γ > 0 is chosen such that the step size ‖∆x‖ =
δ and the UAV moves in the direction away from the user

(see Fig. 4).

The search at this branch is completed whenever the UAV

reaches a point x(ρ, θ) such that either ∂F1(ρ, θ)/∂ρ ≥ 0 or

ρ ≥ L cos θ, where L , ‖xb − xu‖. The justification of the

two stopping criteria will become clear in Section IV-A.

3) Search on the Left Branch: Starting from the critical

position x
0
1, the UAV moves to x(ρ01,−δ/ρ01), i.e., a position

just on the left of x0
1 in Fig. 4 (a). It repeats the same process as

in Section III-C2 until it meets the stopping criteria. When the

search is completed, the track record x̂ that achieves the least

cost will be the desired UAV position. Note that the position

x̂, for example, point A in Fig. 4 (a), is not necessarily where

the search terminates.

Algorithm 1 Shaded-Contour-Exploration

Choose a step size δ > 0.

1) Search on the BS-user axis: Find the critical points

ρ0k, k = 1, 2, . . . ,K , defined in (14). Initialize Fmin =
F1(ρ

0
1, 0) and x̂ = x(ρ01, 0), where x(ρ, θ) is defined in

(8). Initialize k = 1.

2) Search on the right branch: Set x← x(ρ0k, δ/ρ
0
k).

3) For each iterate x, compute ρ = ‖x − xu‖ and θ from

(10).

a) Search in the virtual LOS region: If x ∈⋃k
j=1Dj , update

x← x(ρ+ δ, θ). (12)

When F (ρ + δ, θ) < Fmin, update the record

Fmin ← F (ρ+ δ, θ) and x̂← x(ρ+ δ, θ).
b) Search in the virtual NLOS region: If x /∈⋃k

j=1Dj , update x← x+∆x, where

∆x = γ

[
M(θ)u+ ρ

d

dθ
M(θ)u

(
− ∂Fk

∂θ

)−1 ∂Fk

∂ρ

]

(13)

where γ > 0 is chosen such that ‖∆x‖ = δ.

Repeat this step until either (i) ρ ≥ L cos θ or (ii)

∂Fk(ρ, θ)/∂ρ ≥ 0.

4) Search on the left branch: Set x ← x(ρ0k,−δ/ρ0k).
Repeat Step 3).

5) Let k← k + 1. Repeat from Step 2) until k > K − 1.

6) If FK(ρ0K , 0) < Fmin, then Fmin ← FK(ρ0K , 0) and

x̂← x(ρ0K , 0).

D. Search Trajectory Design for Arbitrary K

In the case of more than two propagation segments, one

can generate K − 1 search trajectories following a similar

procedure in Section III-C, where each trajectory is computed

by partitioning the whole area into two virtual propagation

regions: virtual LOS region and virtual NLOS region. Specif-

ically, for the kth search trajectory, the virtual LOS region is

defined by grouping the first k propagation segments together

D̃k ,
⋃k

j=1Dj , and correspondingly, the virtual NLOS region

is defined as D̃c
k , D\D̃k =

⋃K
j=k+1Dj . The whole algorithm

can be summarized as follows.

• Search on BS-user axis: Let the UAV start from the BS.

It first moves towards the user along the BS-user axis

until it finds the K − 1 critical positions x
0
k = x(ρ0k, 0),

k = 1, 2, . . . ,K−1, each of which corresponds to a point

achieving the minimum cost over the BS-user axis in a

virtual LOS region, i.e., ρ0k are the solutions to

minimize
ρ≥0

Fk(ρ, 0) (14)

subject to x(ρ, 0) ∈
k⋃

j=1

Dj (15)

for k = 1, 2, . . . ,K−1. In addition, ρ0K is defined as the

solution that minimizes (14) subject to x(ρ, 0) ∈ DK .

• Search over K−1 virtual LOS/NLOS partition scenarios:

In the kth search, k = 1, 2, . . . ,K − 1, the UAV follows
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a similar procedure as that in Sections III-C2 and III-C3

for virtual LOS region D̃k and virtual NLOS region D̃c
k.

• Integration: During the whole search, the UAV keeps

track of the minimum achievable cost Fmin and the

corresponding position x̂. When the algorithm terminates,

x̂ gives the desired UAV position.

The entire search algorithm is summarized in Algorithm

1. An example search trajectory under the K = 2 model

in the polar coordinate system is visualized in Fig. 4 (a),

where the black curve represents the search trajectory and the

dashed gray curves represent the contours of the cost function

F1(ρ, θ).

E. Propagation Segment Detection

As the parameters ak and bk and the statistics of ξk in (2)

are assumed known as discussed in Section II-B, the propa-

gation segment can be determined using maximum likelihood

detection. Let hk be the probability distribution function of

the random variable ξk in propagation segment k. Then, the

maximum likelihood estimator of the propagation segment is

given by

k̂ = argmax
k=1,2,...,K

hk(y − bk + ak log10 d(x))

where y is the channel gain GdB measured at the UAV location

x. In addition, if ξk are zero mean Gaussian distributed with

variance σ2
k, then the detection rule can be simplified as

k̂ = argmin
k=1,2,...,K

1

σk

|y − bk + ak log10 d(x)| .

Note that, in practice, the parameters ak and bk and the

statistics of ξk can be estimated in a separate training phase.

Alternatively, the parameter estimation can be integrated in

Step 1 in Algorithm 1. Specifically, the UAV moves along

the BS-user axis (and, optionally, to a few random locations)

to collect enough channel measurements. Then, a maximum

likelihood estimation method can be performed to learn these

parameters [26], [27].

IV. GLOBAL OPTIMALITY AND LINEAR SEARCH LENGTH

It turns out that Algorithm 1 can find the globally optimal

solution to P for at least two types of cost functions f .

Condition 1. Assume that the cost function f(x, y) in P

satisfies
∂2f(x,y)
∂x∂y

= 0,

x
∂2f(x, y)

∂x2
+ 2

∂f(x, y)

∂x
≥ 0, y

∂2f(x, y)

∂y2
+ 2

∂f(x, y)

∂y
≥ 0

(16)

for every x, y > 0.

It can be easily verified that the cost function (6) in the

outage probability minimization example in Section II-C1

satisfies Condition 1.

Condition 2. Assume that the cost function f(x, y) in P can

be written as max{f1(x), f2(y)}, where f1(x) and f2(y) are

decreasing functions.

It is also clear that the cost function (7) in the rate

maximization example in Section II-C2 satisfies Condition 2.

In addition, we discuss optimality for continuous-time al-

gorithm trajectory x(t), which can be obtained from Algo-

rithm 1 using infinitesimal step size δ = O(dt) at each

infinitesimal time slot dt. Specifically, the search trajectory

x(t) in Algorithm 1 can be described by piece-wise con-

tinuous dynamic systems, where one replaces δ by κdt in

(12) and γ by κγ̄dt in (13), in which κ is a parameter

that specifies the moving speed of the UAV. Accordingly,

the continuous-time processes of the minimum cost Fmin(t)
and the position track record x̂(t) are given by Fmin(t) =
minimize0≤τ≤t f(gu(x(τ), gb(x(τ)) and x̂(t) = x(τ̂ ), respec-

tively, where τ̂ = argmin0≤τ≤t f(gu(x(τ), gb(x(τ)).

A. Global Optimality

We first present the main optimality result as follows.

Theorem 1 (Global Optimality). Suppose that the cost func-

tion f in P satisfies either Condition 1 or Condition 2. Then,

x̂(t) in Algorithm 1 converges to the globally optimal solution

to P and Fmin(t) converges to the minimum cost value in

finite time.

Theorem 1 confirms that the globally optimal UAV posi-

tion is attainable, even though the terrain topology could be

arbitrarily complex.

The optimality result can be better understood from the

polar coordinate system. From the definition of the fictitious

segment cost functions Fk(ρ, θ) in (11), problem P can be

equivalently written as

P
′ : minimize

ρ≥0,−π≤θ≤π
F (ρ, θ) ,

K∑

k=1

Fk(ρ, θ)I{(ρ, θ) ∈ Pk}

where Pk ,
{
(ρ, θ) : x(ρ, θ) ∈ Dk

}
is the kth propagation

segment in the polar coordinate system. The optimal solution

x
⋆ to P can be obtained as x⋆ = x(ρ⋆, θ⋆), in which (ρ⋆, θ⋆)

is the optimal solution to P
′.

The following intermediate results provide some intuitions

to understand Algorithm 1 and Theorem 1.

Proposition 2 (Bounded Search Region). The optimal solution

x
⋆ to P can be obtained as x(ρ⋆, θ⋆), where (ρ⋆, θ⋆) ∈ P

and

P =
{
(ρ, θ) : 0 ≤ ρ ≤ L cos θ,−π

2
≤ θ ≤ π

2

}
(17)

in which, L , ‖xb − xu‖ is the horizontal distance from the

BS to the user.

Proof. Please refer to Appendix A.

Proposition 2 justifies the first stopping criterion ρ ≥ L cos θ
in Step 3) of Algorithm 1. An intuitive explanation is that when

the UAV moves outside the region P in (17), one can always

find a position in P that has an equal (or smaller) distances,

respectively, to the BS and to the user in the same (or less

obstructed) propagation segment Dk, leading to an equal (or

lower) cost to achieve. Therefore, the optimal UAV position

is contained in P .
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The following proposition justifies the second stopping

criterion ∂Fk(ρ, θ)/∂ρ ≥ 0.

Proposition 3 (Partial Optimality). Suppose that the cost

function f in P satisfies either Condition 1 or Condition 2.

Then, Fk(ρ, θ) admits a unique local minimizer ρ∗k(θ) over

ρ ≥ 0 for every fixed θ, where |θ| < π/2.

Proof. Please refer to Appendix B.

Due to the fact that Fk(ρ, θ) has a unique local minimum for

every θ, condition ∂Fk(ρ, θ)/∂ρ ≥ 0 implies that ρ ≥ ρ∗k(θ).
On the other hand, Step 3) of Algorithm 1 always increases

ρ (to be formally justified in Lemma 9 in Appendix D).

Therefore, it suffices to stop the search when the condition

∂Fk(ρ, θ)/∂ρ ≥ 0 is met.

Based on Propositions 2 and 3, the proof of Theorem 1 is

derived in Appendix C.

B. Maximum Length of the Algorithm Trajectory

Here, we derive the worst-case trajectory length of Algo-

rithm 1.

Theorem 2 (Maximum Trajectory Length). The length of

the search trajectory from Algorithm 1 is upper bounded by

(2.4K−1.4)L, where L , ‖xb−xu‖ is the horizontal distance

from the BS to the user.

Proof. Please refer to Appendix D.

Theorem 2 suggests that the algorithm must terminate in

a finite number of steps given a positive step size δ > 0.

The total number of steps scales as O(L/δ). Surprisingly,

the bound is linear in L and does not depend on the actual

terrain, i.e., the shapes of the propagation segments Dk.

As a benchmark, if one searches the optimal UAV position

following the segment boundaries (a property from Proposition

1), the worst-case search length is not guaranteed to be linear

in L, depending on the actual shapes of the boundaries (see,

for example, Fig. 2(c)).

V. NUMERICAL RESULTS

Consider a dense urban area with buildings ranging from 5–

45 meter height following a uniform distribution as illustrated

in Fig. 2 (a). The user is represented by a red circle and the

BS locates at the top right corner denoted by a blue triangle.

The height of the BS is 45 meters, and the UAV moves

at 50 meter above the ground. As a result, there is always

LOS propagation between the UAV and the BS. Consider two

propagation scenarios, LOS and NLOS, for the UAV-to-user

link; this corresponds to many existing models in the literature

for a fair comparison. Correspondingly, the parameters of

the UAV-BS channel in (1) are chosen as (α0, log10 β0) =
(2.08, −3.85); Rician fading with 20 dB K-factor is assumed

according to the Rural Macro BS to UAV scenario in [23].

The parameters of the UAV-user channel in (5) are chosen

as (α1, log10 β1, α2, log10 β2) = (2.14, −3.69, 3.03, −3.84);
Rician fading with 9 dB K-factor is assumed for the LOS case
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Figure 5. Empirical cumulative distribution function of the LOS probability
in terms of the elevation angle estimated for the city topology shown in Fig.
2 (a). This is for evaluating the baseline scheme of Probabilistic Algorithm.

and Rayleigh fading is assumed for the NLOS case according

to the Urban Micro BS to UAV scenario in [23].

We consider the example capacity maximization problem in

Section II-C2 for optimal UAV positioning. The transmission

powers are chosen as Pb = 30 dBm from the BS and Pd = 36
dBm from the UAV, and the noise power is −80 dBm. The

corresponding power map and end-to-end capacity map for

every UAV position are illustrated in Fig. 2 (b) and (c).

In Fig. 4 (b), the green curves show the search path from

Algorithm 1. The two curve branches correspond to the UAV

searches in Step 2) and Step 4) in Algorithm 1, respectively.

The other curves in Fig. 4 (b) represent the contour of the

capacity map as in Fig. 2 (c). The optimal UAV position is

found at the purple diamond.

A. Throughput and Outage Probability for Single User Case

We now evaluate the average throughput of UAV relay

system for a single user located randomly and uniformly on

the streets in Fig. 2 (a). The transmission powers are chosen

as Pb = Pd = 33 dBm for both the BS and the UAV, and

the throughput is evaluated as the absolute value of (7). The

proposed scheme places the UAV to the position obtained from

Algorithm 1 under step size δ = 5 meters. We also consider

the following baselines for UAV positioning:

• Probabilistic Algorithm [20]: First, obtain an empirical

LOS distribution fLOS(ϕ) = P{LOS , ϕ} as a function

of the elevation angle ϕ = ϕ(x,xu) from the user at

(xu, 0) to the UAV at (x, Hd), by uniformly and randomly

dropping 10,000 users on the streets in Fig. 2 (a) and

randomly picking UAV locations within the target area.

The empirical distribution function fLOS(ϕ) is shown in

Fig. 5. Second, given each user position xu, the UAV-user

channel at UAV location x is computed as

gu(x,xu) = fLOS(ϕ)β1‖x− xu‖−α1

+
(
1− fLOS(ϕ)

)
β2‖x− xu‖−α2 . (18)
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(a) Throughput of the three user categories
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(b) CDF of the end-to-end throughput

Figure 6. Comparison of the average end-to-end throughput over different
schemes.

The optimal UAV position is then obtained by solving P

with gu(x) =gu(x,xu) in (18).

• Simple Search: Obtain the optimal UAV position by

searching only on the BS-user axis (i.e., to implement

only Step 1 of Algorithm 1).

• Exhaustive Search: We perform exhaustive search over

the entire search region on equally-spaced grids with

δ = 5 meter spacing. The grid point that maximizes the

cost in (7) is chosen as the UAV position. Note that such

a scheme is prohibited in practice and hence it is for

benchmarking only.

The performance on direct BS-user transmission (without UAV

relaying) is evaluated using the segmented channel model (5)

by replacing du(x) by the BS-user distance and replacing

I{x ∈ Dk} by the indicator of the BS-user link propagation

condition.

Fig. 6 compares the average capacity of the Decode-and-

Forward relay system discussed in Section II-C2 over 10,000
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Figure 7. Outage probability reduction from the direct BS-user transmission
scheme.

user positions in Fig. 2 (a). The cell edge users are recognized

as those within the 20th percentile of the throughput under

direct BS-user transmission, and the cell center users are

recognized as those in the top 20th percentile.4 First, across

all the three user categories shown in Fig. 6 (a), the proposed

scheme with the optimal UAV placement achieves the highest

throughput. In particular, it realizes more than 2X throughput

gain on average over an probabilistic approach. Second, the

proposed scheme performs as well as the exhaustive search

scheme as seen from the two overlapping cumulative distri-

bution function (CDF) curves in Fig. 6 (b), which verify our

theoretical results on optimality.

Fig. 7 compares the outage probability reduction from the

direct BS-user transmission scheme using the Amplify-and-

Forward relay system discussed in Section II-C1. Specifically,

it is defined as f(x∗)/f0, where f(x) is the cost function

defined in (6) with x
∗ being the optimal UAV positions

found by various schemes, and f0 = 1/(Pbg0(xu)), in which,

g0(xu) is the channel gain of the direct BS-user link. It

is observed that the proposed scheme provides a significant

outage probably reduction. In addition, it also confirms the

globally optimality of the proposed scheme, when comparing

its performance with the exhaustive search baseline.

B. Clustered Multiuser Case

We evaluate the proposed UAV placement strategy for the

case of Nu = 20 users clustered around a hotspot with radius

ru meters. We implement a search trajectory from Algorithm

1 w.r.t. a virtual user located at xc and evaluate the sum data

rate f̄(x) as discussed in Section II-C3. As a benchmark, the

baseline scheme minimizes the average cost f̄(x) evaluated

using the probabilistic model gu(x,x
(i)
u ) in (18) for each user

i. We drop 500 clusters uniformly and randomly in Fig. 2

(a), and evaluate the average throughput for the obstructed

4We found from our experiment that around 22% users have LOS condition
on the BS-user link.
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clusters, of which the center position xc is in NLOS condition

to the BS.

Fig. 8 shows the average throughput performance versus

the radius ru of the cluster. The case ru = 0 refers to the

single user scenario, and we know that Algorithm 1 achieves

the globally optimal performance. When the cluster radius

increases, the average throughput drops, because the proposed

search algorithm is not optimized for the multiple users away

from the cluster center. Nevertheless, the system still benefits

from the proposed search strategy because the users nearby

still share some degree of correlation in the propagation

environment. As a result, the proposed strategy does also

achieve significant performance gain over the probabilistic

scheme.

VI. CONCLUSION

This paper designed algorithms to search for the optimal

UAV position for establishing the best wireless relay link

between a BS and a user in a dense urban area, where

global topological information, such as a 3D city map, is

not available. The desired UAV position, constrained at a

fixed height above the ground, was defined as the minima

of a general cost function. A nested segmented propagation

model was proposed to model the propagation from the UAV

to the ground user that is probably blocked by obstacles. A

search algorithm was developed and shown to find the globally

optimal UAV position. In addition, the length of the search

trajectory is upper bounded by a linear function of the diameter

of the target area. Significant throughput gain was found when

compared to other UAV positioning approaches or direct BS-

user transmissions.

APPENDIX A

PROOF OF PROPOSITION 2

From the nested segmented propagation model (3)–(4), it is

easy to verify that for any ρ and θ, the following holds

Fk(ρ, θ) < Fk+1(ρ, θ) (19)

for k = 1, 2, . . . ,K − 1.

The result of Proposition 2 can be proven by contradiction

as follows.

First, suppose that solution x(ρ′, θ′) satisfies π
2 < |θ′| < π.

Then, we must have F1(ρ
′, θ′) ≤ F (ρ′, θ′) from property (19)

as Pk are mutually exclusive. Since there is LOS propagation

when the UAV is on top of the outdoor user, i.e., (0, 0) ∈ P1,

we have

F (0, 0) = F1(0, 0) < F1(ρ
′, θ′) ≤ F (ρ′, θ′)

where, by moving from (0, 0) to (ρ′, θ′), the UAV position

(ρ′, θ′) has longer distances to both the user and the BS. Thus,

by contradiction, x(ρ′, θ′) cannot be the optimal solution to

P , i.e., we must have |θ′| ≤ π
2 .

Second, suppose that the optimal solution x(ρ′, θ′) satisfies

ρ′ > L cos θ′. Consider a different solution x(ρ′′, θ′), where

ρ′′ = L cos θ′−(ρ′−L cos θ′). From geometry, one can easily

show that the UAV-BS distance db(x(ρ
′, θ′)) = db(x(ρ

′′, θ′))
and the UAV-user distance du(x(ρ

′′, θ′)) < du(x(ρ
′, θ′)).

Suppose that (ρ′, θ′) ∈ Pk and (ρ′′, θ′) ∈ Pj . From the

nested segmented property (3)–(4), we must have j ≤ k. From

property (19), we have

F (ρ′′, θ′) = Fj(ρ
′′, θ′) < Fk(ρ

′′, θ′) < Fk(ρ
′, θ′) = F (ρ′, θ′)

which contradicts to the hypothesis that (ρ′, θ′) minimizes

the objective function F (ρ, θ). This confirms that the optimal

solution must satisfies 0 ≤ ρ ≤ L cos θ.

APPENDIX B

PROOF OF PROPOSITION 3

A. Proof under Condition I

We first analyze the property of the composite function

f((gu ◦ du)(z), (gb ◦ db)(z)).

Lemma 1. Let gi(di) = βid
−αi

i , i = 1, 2, and α > 1. Let

di(z), i = 1, 2, be convex functions in z. Suppose that f(x, y)
satisfies Condition 1. Then, the composite function f((g1 ◦
d1)(z), (g2 ◦ d2)(z)) is strictly convex in z.

Proof. Since ∂f/∂x < 0 and ∂f/∂y < 0, the first order

partial derivative of f(g1 ◦ d1, g2 ◦ d2) is given by

∂f

∂di
=

∂f

∂gi

∂gi
∂di

=
∂f

∂gi
(−αiβi)d

−αi−1
i > 0

for i = 1, 2, and the second order partial derivative is given

by

∂2f

∂d2i
=

∂2f

∂g2i

∂gi
∂di

(−αiβi)d
−αi−1
i + (−αiβi)

∂f

∂gi

∂

∂di
d−αi−1
i

= α2
i βid

−αi−2
i

(
βid

−αi

i

∂2f

∂g2i
+

αi + 1

αi

∂f

∂gi

)

> α2
i βid

−αi−2
i

(
gi
∂2f

∂g2i
+ 2

∂f

∂gi

)

≥ 0

for i = 1, 2, where the first inequality is due to the fact that

αi > 1 and ∂f
∂gi

< 0.
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Define an operator ∇ , [ ∂
∂z1

∂
∂z2

. . . ∂
∂zm

]T, where zi is

the ith entry of a vector variable z. From ∇f = ∂f
∂d1
∇d1 +

∂f
∂d2
∇d2, the Hessian matrix of f is given by

∇2f =
∂2f

∂d21
∇d1∇dT

1 +
∂f

∂d1
∇2d1

+
∂2f

∂d22
∇d2∇dT

2 +
∂f

∂d2
∇2d2 � 0

since ∇2di(z) � 0 due to the convexity of di(z). Therefore,

f is strictly convex in z (as di(z) are strictly convex).

From the polar representation of the UAV-user and UAV-BS

distances

db(x(ρ, θ)) =
√
ρ2 + L2 − 2ρL cosθ + (Hd −Hb)2 (20)

du(x(ρ, θ)) =
√
ρ2 + (Hd −Hu)2 (21)

one can show that db(x(ρ, θ)) and du(x(ρ, θ)) are strictly

convex in ρ.

Then, using Lemma 1 and the definition of Fk(ρ, θ) in (11),

we can conclude that Fk(ρ, θ) is strictly convex in ρ, and

therefore, Fk(ρ, θ) admits a unique local minima ρ∗k(θ) in the

bounded interval ρ ∈ [0, L cos θ].

B. Proof under Condition II

Consider Fk(ρ, θ) = max{f1(g(k)u (x(ρ, θ)), f2(gb(x(ρ, θ))}.
From (20)–(21), to increase ρ, we must have du increase

and db decrease, and as a result, f1 decreases and f2
increases monotonically in ρ ∈ [0, L cos θ]. Therefore, these

exists a unique local minimizer ρ∗k(θ) in the closed interval

[0, L cos θ].

APPENDIX C

PROOF OF THEOREM 1

We first state the following lemma for the property of the

fictitious segment cost functions Fk(ρ, θ) in (11) derived in

the polar domain from the original objective f .

Lemma 2. It holds that

∂Fk(ρ, θ)/∂|θ| > 0 (22)

for all k and θ 6= 0. In addition, for any θ′ ≥ 0, the following

property holds

min
ρ≥0

Fk(ρ, θ
′) ≤ min

j≥k
min

ρ≥0,θ′<θ≤π

2

Fj(ρ, θ) (23)

for 1 ≤ k ≤ K . Similarly, for any θ′ < 0,

min
ρ≥0

Fk(ρ, θ
′) ≤ min

j≥k
min

ρ≥0,−π

2
≤θ<θ′

Fj(ρ, θ) (24)

Proof. We first note that ∂
∂|θ|Fk(ρ, θ) > 0 for all k =

1, 2, . . . ,K , because increasing |θ| will increase the UAV-

BS distance db while the UAV-user distance du = ρ is not

affected, and hence gb(x(ρ, θ)) is decreased. As the cost

function f(x, y) is increasing with x and y, respectively, due to

conditions I or II, the cost Fk(ρ, θ) increases as |θ| increases.

Consider that θ′ ≥ 0. For every 0 ≤ ρ ≤ L, θ ≥ θ′, and

j ≥ k, we must have

Fk(ρ, θ
′) ≤ Fj(ρ, θ

′) ≤ Fj(ρ, θ).

As a result, minρ≥0 Fk(ρ, θ
′) ≤ minρ≥0 Fj(ρ, θ) for every

θ > θ′. Hence the result (23) is confirmed.

The case of (24) can be shown in a similar way.

Theorem 1 can be equivalently rewritten, in a more general

setting, using the notions and conditions from the polar domain

as follows:

Theorem 1A. Suppose that the set of segments {Pk} defined

along with P
′ satisfy the nested condition (4). In addition,

assume that the globally optimal solution to P ′ belongs to

the bounded search region P defined in (17), and the local

minimizer ρ∗k(θ) of Fk(ρ, θ) is unique for each k and each

θ, |θ| < π
2 . Moreover, suppose that the functions Fk(ρ, θ)

satisfy conditions (22)–(24). Then, the polar domain trajec-

tory (ρ̂(t), θ̂(t)) obtained from x̂(t) following Algorithm 1

converges to the globally optimal solution to P ′.

Note that it has been proven in Propositions 2 and 3 and

Lemma 2 that the objective function f (which satisfies either

condition I or II) in the UAV positioning problem P (and,

correspondingly, the functions Fk in P ′) satisfy the conditions

in Theorem 1A. The remaining part of this section thus focuses

on proving Theorem 1A.

A. Optimality for the Two Segment Case

When the algorithm terminates at t = T , it turns out that

the cost value track record Fmin(T ) along with the algorithm

trajectory satisfies Fmin(T ) ≤ minimizeρ≥0,(ρ,θ)∈P2
F2(ρ, θ)

because

Fmin(T ) ≤ minimize
0≤ρ≤L

F (ρ, 0) (25)

= minimize
ρ≥0

F (ρ, 0) (26)

≤ minimize
ρ≥0

F2(ρ, 0) (27)

≤ minimize
ρ≥0,(ρ,θ)∈P2

F2(ρ, θ) (28)

where inequality (25) is due to Step 1) and 6) in Algorithm 1

and the fact that Fmin(t) is a non-increasing process. Equality

(26) is due to the condition in Theorem 1A (proven in

Proposition 2), inequalities (27) and (28) are from conditions

(23)–(24) (proven in Lemma 2).

In fact, it also holds that

Fmin(T ) ≤ minimizeρ≥0,(ρ,θ)∈P1
F1(ρ, θ)

as follows.

Lemma 3 (Optimality for K = 2). In the two segment case,

the continuous trajectory (ρ(t), θ(t)) passes through (ρ∗, θ∗)
before it completes Step 3) in Algorithm 1 at t = T1, i.e., there

exists t∗ ≤ T1, such that ρ(t∗) = ρ∗ and θ(t∗) = θ∗, where

(ρ∗, θ∗) is the optimal solution to the following problem

minmize
ρ≥0,(ρ,θ)∈P1

F1(ρ, θ) (29)
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where the minimum value equals to Fmin(T1).

Since T1 ≤ T , we must have Fmin(T ) ≤ Fmin(T1) and the

former one lower-bounds both the subproblems (28) and (29).

Since Fmin(t) represents the cost value track record along the

trajectory (ρ̂(t), θ̂(t)), we conclude that (ρ̂(T ), θ̂(T )) attains

the globally optimal solution to P ′ for the two segment case.

In the following two subsections, we first prove some

preliminary properties of Algorithm 1, and then, we use these

properties to prove Lemma 3.

B. Preliminary Properties of Algorithm 1

The following property states that, along the algorithm

trajectory, the same cost F1(ρ(t), θ(t)) is achievable at some

prior time τ ≤ t, even when the current step (ρ(t), θ(t)) is

not in the LOS region.

Lemma 4. For every point on the algorithm trajectory

(ρ(t), θ(t)), 0 ≤ t ≤ T , there exists 0 ≤ τ ≤ t, such that

(ρ(τ), θ(τ)) ∈ P1 and

F (ρ(τ), θ(τ)) = F1(ρ(τ), θ(τ)) = F1(ρ(t), θ(t)).

Proof. If (ρ(t), θ(t)) ∈ P1, we have F (ρ(t), θ(t)) =
F1(ρ(t), θ(t)) and τ = t. If (ρ(t), θ(t)) ∈ P2, then the

algorithm is in the loop of Step 3b), where it follows the

trajectory on the contour F1(ρ(t), θ(t)) = C. To trace back-

ward, there must be a 0 ≤ τ < t, such that F1(ρ(τ), θ(τ)) =
F1(ρ(t), θ(t)) and (ρ(τ), θ(τ)) ∈ P1. Note that the initial

point (ρ01, 0) from Step 1) is in the LOS region P1 from the

definition (8).

The following result shows that the algorithm trajectory

always satisfies ∂F1(ρ, θ(t))/∂ρ ≤ 0 until the algorithm

terminates.

Lemma 5. Let ρ∗1(θ) minimize F1(ρ, θ) over all ρ ≥ 0 with

θ fixed. Then, the algorithm trajectory (ρ(t), θ(t)) satisfies

ρ(t) ≤ ρ∗1(θ(t)) and ∂F1(ρ(t), θ(t))/∂ρ ≤ 0 for all t before

the iteration completes Step 3). Moreover, ∂F1(ρ, θ(t))/∂ρ ≤
0 for all 0 ≤ ρ ≤ ρ(t). The same result holds for the search

trajectory in Step 4).

Proof. First, from the definition of ρ01 in (14) and the nested

segmented propagation property (3) – (4), we have ρ01 ≤ ρ∗1(0).
This is because, we have x(ρ01, 0) ∈ D1 from (14), and hence,

all the points (ρ, 0), 0 ≤ ρ ≤ ρ01, are in the LOS region.

As a result, if ρ01 > ρ∗1(0), then (ρ∗1(0), 0) is also in the LOS

region (satisfying the constraint (15)), which implies that ρ∗1(0)
minimizes (14), yielding a contradiction. Therefore, from Step

1), we have the initial point (ρ(0), θ(0)) satisfying θ(0) = 0
and ρ(0) = ρ01 ≤ ρ∗1(0) = ρ∗1(θ(0)).

Second, as the local minimizer ρ∗1(θ) is unique from Propo-

sition 3, we must have ∂F1(ρ, θ)/∂ρ < 0 for ρ < ρ∗1(θ)
and ∂F1(ρ, θ)/∂ρ > 0 for ρ > ρ∗1(θ). (Note that there is no

saddle point either, due to the strict convexity under Condition

1 and monotonicity of f1 and f2 under Condition 2.) Once

∂F1(ρ(t), θ(t))/∂ρ ≥ 0, Step 3) is completed. As a result, it

holds that ρ(t) ≤ ρ∗1(θ(t)).

C. Proof of Lemma 3

It suffices to prove for the subproblem

P
′
1+ : Fmin(T1) ≤ minimize

ρ≥0,(ρ,θ)∈P+

1

F1(ρ, θ) (30)

which is essentially solved by the iterations in Step 2) of

Algorithm 1, where P+
1 = {(ρ, θ) : 0 ≤ θ ≤ π

2 , (ρ, θ) ∈ P1}.
Indeed, the counterpart subproblem over the constraint set

P−
1 = {(ρ, θ) : −π

2 ≤ θ ≤ 0, (ρ, θ) ∈ P1} is solved in a

similar way by Step 4). If (30) holds, then it must also hold

that

Fmin(T1) ≤ minimizeρ≥0,(ρ,θ)∈P−

1

F1(ρ, θ)

which confirms the result of Lemma 3.

Step A: We first show that the algorithm trajectory

(ρ(t), θ(t)) in the loop of Step 3) can only stop at θ(T ) ≥ θ∗,

where T ≤ T1. Therefore, as the algorithm trajectory from

Step 3) is continuous, we must have θ(t) = θ∗ for some t ≤ T .

Lemma 6. The algorithm trajectory in Step 3) (ρ(t), θ(t))
can only stop at θ(T ) = θ′ ≥ θ∗ where (ρ∗, θ∗) is the optimal

solution to P ′
1+.

Proof. The result can be proven by contradiction. Suppose that

Step 3) stops at (ρ(T ), θ(T )) where ρ(T ) = ρ′ and θ(T ) =
θ′ < θ∗. As Step 3) is completed, either one of the stopping

criteria should have been triggered.

First, suppose that the condition ∂F1(ρ
′, θ′)/∂ρ ≥ 0 was

triggered. From Lemma 4, there exists τ ≤ T , such that

F1(ρ(τ), θ(τ)) = F1(ρ
′, θ′) and (ρ(τ), θ(τ)) ∈ P+

1 . From

Lemma 5 and the condition in Theorem 1A that corresponds

to Proposition 3, (ρ′, θ′) minimizes F1(ρ, θ
′) over ρ ≥ 0. As

a result,

F1(ρ(τ), θ(τ)) = F1(ρ
′, θ′)

= minimize
ρ≥0

F1(ρ, θ
′) (31)

≤ min
j≥1

minimize
ρ≥0,θ′<θ≤π

2

Fj(ρ, θ)

≤ minimize
ρ≥0,θ′<θ≤π

2

F1(ρ, θ) (32)

≤ minimize
ρ≥0,θ′<θ≤π

2
,(ρ,θ)∈P+

1

F1(ρ, θ)

= F1(ρ
∗, θ∗)

where the first two inequalities are from the condition in

Theorem 1A that corresponds to Lemma 2. The third equality

is by the hypothesis θ∗ > θ′. However, this violates the

assumption (ρ∗, θ∗) being the solution to subproblem P
′
1+,

since (ρ(τ), θ(τ)) ∈ P+
1 now yields a lower cost. By con-

tradiction, the stopping criterion ∂F1(ρ
′, θ′)/∂ρ ≥ 0 is not

satisfied.

Second, suppose that the condition ρ(T ) = ρ′ ≥ L cos θ′

is triggered. From the bounded search region condition in

Theorem 1A (corresponding to Proposition 2) and from the

hypothesis θ(T3) = θ′ < θ∗ , we have

ρ′ ≥ L cos θ′ > L cos θ∗ ≥ ρ∗.

From Lemma 5, ρ∗1(θ
′) > ρ′ and ∂F1(ρ, θ

′)/∂ρ < 0 for ρ′ ≥
ρ ≥ ρ∗. As a result,

F1(ρ
′, θ′) < F1(ρ

∗, θ′) < F1(ρ
∗, θ∗) (33)
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where the second inequality is from Lemma 2.

From Lemma 4, there exists τ ≤ T , such that (ρ(τ), θ(τ)) ∈
P+
1 and

F1(ρ(τ), θ(τ)) = F1(ρ
′, θ′) < F1(ρ

∗, θ∗)

which contradicts to the hypothesis (ρ∗, θ∗) being the solution

to subproblem P
′
1+. Therefore, the stopping criterion ρ(T3) =

ρ′ ≥ L cos θ′ is not satisfied either.

To conclude, since neither of the stopping criteria is trig-

gered, by contradiction, the algorithm can only stop at θ(T ) ≥
θ∗.

Step B: We then argue that when the trajectory reaches

θ(t) = θ∗ for some t ≤ T , it must hold that (ρ(t), θ(t)) ∈ P+
1

and ρ(t) ≤ ρ∗.

Lemma 7. The algorithm trajectory satisfies (ρ(t1), θ(t1)) ∈
P+
1 , where t1 ≥ 0 satisfies θ(t1) = θ∗ and θ(t) ≤ θ∗ for

t < t1.

Proof. We note that ρ(t1) ≤ ρ∗. This is because if

ρ(t1) > ρ∗, we must have F1(ρ(t1), θ
∗) < F1(ρ

∗, θ∗), since

∂F1(ρ, θ
∗)/∂ρ < 0 for all ρ(t1) > ρ > ρ∗ as from Lemma 5.

As a result of Lemma 4, there exists τ ≤ t1, such that

F1(ρ(τ), θ(τ)) = F1(ρ(t1), θ
∗) < F1(ρ

∗, θ∗)

and (ρ(τ), θ(τ)) ∈ P+
1 , which contradicts to the assumption

that (ρ∗, θ∗) is the solution to (29).

As (ρ∗, θ∗) ∈ P+
1 , from the nested segmented propagation

property (3)–(4), we can conclude that (ρ(t1), θ(t1)) ∈ P+
1 .

Since (ρ(t1), θ(t1)) ∈ P+
1 , ρ(t) will increase to ρ∗ follow-

ing Step 3a) in Algorithm 1. This completes the proof that the

algorithm trajectory passes through (ρ(t2), θ(t2)) = (ρ∗, θ∗)
at time t2, where t1 ≤ t2 ≤ T3.

Step C: Now, the algorithm iterate (ρ(t), θ(t)) is at the stage

of Step 3a) in Algorithm 1, with θ(t) = θ∗ and ρ(t) ≤ ρ∗. It

must reach (ρ∗, θ∗) following Step 3a), where (ρ∗, θ∗) solves

P
′

1+.

With these, we confirm the results of Lemma 3.

D. Optimality for the K Segment Case

We now extend Lemma 3 to the case of more than two

segments.

Lemma 8 (Optimality after k Loops). After completing the

kth loop of Steps 2)–4) in Algorithm 1 at time t = Tk, the

following holds,

Fmin(Tk) ≤ minimize
θ≥0,(ρ,θ)∈Pk

Fk(ρ, θ) (34)

for all k = 1, 2, . . . ,K − 1. Moreover, (34) holds for k = K
when the entire algorithm terminates.

Proof. For the kth loop (k ≤ K − 1) of Steps 2) – 4) in

Algorithm 1, the iteration is equivalent to that in the two

segment case, K = 2. Specifically, the virtual propagation

segment partition (P̃k, P̃c
k) in the kth outer loop corresponds

to the LOS-NLOS partition (P1,P2) in the loop of Steps 2)

– 4) for the K = 2 case. Moreover, the function Fk in the

kth outer loop corresponds to the function F1 in the K = 2
case. As a result, using Lemma 3, Steps 2) – 4) in the kth

loop equivalently solve

P
′
k : minimize

θ≥0,(ρ,θ)∈P̃k

Fk(ρ, θ) (35)

where P̃k ,
⋃k

j=1 Pj and k ≤ K − 1.

We denote the minimum value of (35) as F̃min,k, and the

algorithm trajectory (ρ(t), θ(t)) reaches the optimal solution

(ρ̂(k), θ̂(k)) at time tk ≤ Tk. Since the constraint set P̃k in

(35) contains the constraint set Pk in (34), it must hold that

F̃min,k ≤ minimizeθ≥0,(ρ,θ)∈Pk
Fk(ρ, θ).

Therefore, we still need to show Fmin(Tk) ≤ F̃min,k.

With such a goal, the following two cases are examined:

(i) If (ρ̂(k), θ̂(k)) ∈ Pk, then Fmin(Tk) ≤ F (ρ(tk), θ(tk)) =
Fk(ρ(tk), θ(tk)) = F̃min,k due to the track record update

Fmin(t) from Step 3a).

(ii) If (ρ̂(k), θ̂(k)) /∈ Pk, then it holds that (ρ̂(k), θ̂(k)) ∈
P̃k\Pk =

⋃
i<k Pi. Without loss of generality (w.l.o.g.),

assume that (ρ̂(k), θ̂(k)) ∈ Pj for some j ≤ k − 1. We thus

have

F̃min,k = Fk(ρ̂
(k), θ̂(k))

≥ Fj(ρ̂
(k), θ̂(k)) (36)

= F (ρ(tk), θ(tk))

≥ Fmin(tk)

≥ Fmin(Tk) (37)

where the inequality on the first line is from conditions

(23)–(24). The second line is due to the track record update

Fmin(t) from Step 3a). This shows that inequality (34) is also

true for k.

As a result, we have shown

Fmin(Tk) ≤ F̃min,k ≤ minimizeθ≥0,(ρ,θ)∈Pk
Fk(ρ, θ)

for k = 1, 2, . . . ,K − 1.

Finally, the last step in Algorithm 1 yields

Fmin ≤ FK(ρ∗K(0), 0)

≤ minimize
ρ≥0,0<θ≤π

2

FK(ρ, θ) (38)

≤ minimize
θ≥0,(ρ,θ)∈PK

FK(ρ, θ)

where the second inequality in (38) is from conditions

(23)–(24). The result of Lemma 8 is thus confirmed.

Theorem 1A is a direct result from Lemma 8, since (34)

holds for k = 1, 2, . . . ,K and Fmin(t) is non-increasing,

which implies that Fmin(TK) is the global minimum value

of P ′ and (ρ̂(TK), θ̂(TK)) is the globally optimal solution to

P ′.
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APPENDIX D

PROOF OF THEOREM 2

An important property of Algorithm 1 is that the segment

of search trajectory in Step 3) does not “turn back”, and so

does that in Step 4).

Lemma 9 (Monotonicity). Step 3) in Algorithm 1 strictly

and monotonically increases ρ(t), and it also monotonically

increases |θ(t)|. Similar property holds in Step 4).

Proof. In Step 3a), ρ(t) strictly and monotonically increases,

while θ(t) keeps unchanged. In Step 3b), we have (omitting

the higher order term)

ρ+∆ρ = ‖x+∆x− xu‖
=

√
‖x− xu ‖2 + 2(x− xu)T∆x+ ‖∆x‖2

= ρ
(
1 +

1

ρ2
(x− xu)

T∆x+ o(‖x‖)
)

and since (x− xu)/ρ = M(θ)u from (8), we have

∆ρ = u
T
M(θ)T∆x

= u
T
M(θ)T

M(θ)uγ

+ γρuT
M(θ)T d

dθ
M(θ)u

(
− ∂Fk

∂θ

)−1 ∂Fk

∂ρ

which equals to γ, being strictly positive. Therefore, Step 3)

strictly increases ρ(t).
In addition, Step 3b) moves on the contour of Fk(ρ, θ) = C,

whose dynamics is give by

∂Fk(ρ, θ)

∂ρ
dρ+

∂Fk(ρ, θ)

∂θ
dθ = 0

in which ∂Fk(ρ(t), θ(t))/∂ρ ≤ 0 according to Lemma 5

(with a straight-forward generalization from F1 to Fk) and

∂Fk(ρ, θ)/∂|θ| > 0 according to Lemma 2. As a result, Step

3b) monotonically increases |θ(t)|.

Figure 9. Search region and search trajectory, where point a denotes user,
point c denotes the BS, and point d denotes UAV at the boundary of the
search area.

We now show that the boundary of the search region P in

(17) for the θ > 0 branch is given by a semi-circle as illus-

trated in Fig. 9 (the blue semi-circle). To see this, we first note

that the boundary of P for θ > 0 is given by (ρ cos θ, ρ sin θ),
where ρ = L cos θ and 0 ≤ θ ≤ π/2. Therefore, ad = L cos θ,

ac = L, dc =
√
(L cos2 θ − L)2 + (L cos θ sin θ − 0)2,

which yields (ad)2 + (dc)2 = (ac)2 and hence point d is

on the semi-circle with the diameter given by line segment

ac.

From the monotone property in Lemma 9, the search

trajectory is a convex curve starting from point a at the user

and ending at the semi-circle, e.g., point d. Note that the length

of any curve ăd is less than ab+bd = L cos2 θ+L cos θ sin θ,

where the maximum value over 0 ≤ θ < π/2 can be

numerically evaluated to be roughly 1.2L.

Algorithm 1 consists of the search on the BS-user axis with

maximum length L, and K − 1 loops for the off-BS-user axis

searches, where each loop consists of searches on the left and

right branches each with maximum length 1.2L. As a result,

the total length of the search trajectory is upper bounded by

(2.4K − 1.4)L.
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