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Abstract—Optimal unmanned aerial vehicle (UAV) placement

in a 3-dimensional (3D) space to build a connection between

a base station (BS) and a ground user is studied herein. A key

challenge is to avoid signal propagation blockage due to obstacles.

Much prior work uses probabilistic terrain models with model

parameters learned from the statistics over a large area, and

therefore, the optimization for a specific user in a small local area

is poor. In contrast, this paper seeks the optimal UAV position

over actual and fine-grained terrain, and develops efficient UAV

positioning strategy adaptive to the degree of location-dependent

line-of-sight (LOS) condition measured on the fly. It is proven

that the globally optimal UAV position in 3D can be determined

from the proposed search trajectory which has merely linear

length in the diameter of the target area. Therefore, the proposed

strategy can be practically implemented. Numerical experiments

are performed over a real-world urban topology and demonstrate

superior performance gain over existing strategies based on

probabilistic models.

I. INTRODUCTION

Low altitude small unmanned aerial vehicles (UAVs) have
great potential for boosting the performance of wireless
communication networks. One trending application is to use
UAVs to establish aerial relay networks [1]–[6]. Compared
to traditional base stations (BSs) installed at fixed positions,
the UAV relay system can quickly respond to occasional and
temporary service requests from a specific area in the shadow
of a BS’s coverage. As a result, a dynamic network can be
formed to geographically track time-varying service demands
and quality-of-service guarantees [7]–[10].

A compelling feature of a UAV relay system is the ability
of establishing a better propagation environment for a ground
user, e.g., by providing line-of-sight (LOS) links. This natu-
rally leads to the problem of optimal 3D placement of UAVs.
However, since there are buildings and trees that potentially
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block the air-to-ground signal and create propagation shadows
for the ground user, it is very challenging to find the opti-
mal UAV position, which should depend on the propagation
environment. Prior work bypassed this difficulty by using a
flat-terrain model or a probabilistic terrain model to arrive at
simplified problem formulations [11]–[20]. For example, [11]–
[13] assumed LOS conditions regardless of the UAV and user
positions. In [14]–[22], probabilistic LOS models are used,
where the LOS and non-line-of-sight (NLOS) conditions are
simplified into a random variable with distribution depending
on the elevation angle from the user to the UAV. Since
stochastic models are over-simplified, they fail to capture the
actual blockage situation for a specific user. There is also a
trending research direction that exploits radio maps for UAV
placement to avoid the actual air-to-ground signal blockage,
but existing results only optimize for the 2D case for tractable
complexity, where UAVs fly at a fixed height [23, 24]. The
work [25] also considered LOS-seeking online search for
UAV-aided free space optical communication, but the method
is limited to 2D case.

The goal of the paper is to develop fine-grained blockage-
aware algorithms for the online search of the optimal UAV
position in 3D. There are two main challenges: the sampling
complexity for acquiring the propagation conditions and the
computational complexity due to the unstructured terrain.
First, if there is no radio map available, the UAV may need
to spend a tremendous amount of flight time to explore every
propagation opportunity in 3D. However, an exhaustive search
is prohibitive due to the very limited UAV flight time. Second,
even if we store the entire radio map in an offline database,
the computation for the optimal UAV position is still very
expensive for real time applications because the obstacles may
have arbitrary shapes and so as the patterns of the radio maps.

Our approach is to exploit the hidden structure of the
propagation from a direct ray-tracing mechanism: First, if the
UAV-user link is in LOS, then it remains in LOS when the
UAV moves closer to the user, whereas, when it is in NLOS,
it remains in NLOS when the UAV moves away (see Fig.
1-(b)). Second, when the elevation angle from the user to
the UAV increases, the degree of LOS obstruction tends to
decrease. Existing work has leveraged the stochastic version
of these features to arrive at probabilistic LOS models for
UAV placement [14]–[22]. Herein, we show that exploiting
the deterministic version of these features can achieve a much
higher performance gain, since the UAV has a better sense of
the environment. We develop an exploration-and-exploitation
search strategy with only linear search complexity. Somewhat
surprisingly, it can be proven that the proposed search leads to
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the global optimal solution under mild conditions. This result
theoretically justifies the substantial performance gain of the
proposed method. Our prior work [9] studied a similar UAV
positioning problem in 2D by assuming a fixed UAV height,
but such a constraint limits the potential gain of the UAV
relay system. The extension to 3D requires a new design of
the strategy for low complexity search.1

To summarize, the contributions of this paper are:
• We develop a search strategy to find the optimal the UAV

position in 3D that is aware of the fine-grained actual
propagation environment for the target user. The worst-
case search length is linear in the diameter of the target
area.

• We prove that the search algorithm finds the globally
optimal UAV position over arbitrary terrain structures,
providing theoretical justification for the proposed strat-
egy.

• We evaluate the proposed strategy for three UAV ap-
plication examples over a real-world urban city topol-
ogy, demonstrating substantial performance gain over the
state-of-the-art solutions, such as the methods based on
probabilistic LOS models.

The rest of the paper is organized as follows. Section II
presents the segmented propagation model and the problem
formulation. Section III develops an angular coordinate trans-
formation to enable an effective search on a 2D plane. The
algorithm is then described in Section IV with optimality and
complexity analysis. Three application examples are formu-
lated in Section V with numerical evaluation over an actual
topology in Section VI. Finally, Section VII provides the
conclusions.

Notation: For functions g1(x), g2(x), . . . , gM (x) : Rm
7!

R and a function f(g1, g2, . . . , gM ) : RM
! R, the form

f(g1, g2, . . . , gM )(x) is a short-hand notation of the composite
function f(g1(x), g2(x), . . . , gM (x)). Other key notations are
summarized in Table I.

II. SYSTEM MODEL

Consider a BS located at xb 2 R3 and a user located at xu 2

R3 which is in the propagation shadow of the BS. A UAV is
employed to relay the signal between the BS and the user. The
user location is fixed and the UAV position x = (x1, x2, x3) 2
R3 is to be optimized. Suppose that the altitude of the UAV is
lower bounded by Hmin, the height of the tallest building, such
that no collision will occur. In addition, assume that the BS is
placed on a high enough tower, and therefore, there is always
an LOS condition between the UAV and the BS. However, the
UAV-user link likely gets obstructed as shown in Fig. 1-(a).

A. Channel and Environment Models
Since the UAV position will be optimized in a relatively

large timescale, we focus on the adaptation to the large-scale
channel characteristics. The BS-UAV channel in decibel is
modeled as [gb(x)]dB = b0 � a0 log10 db(x) as LOS is always

1The conference version of this work was presented in [10] with the
technical derivation and application details omitted.

Table I
KEY NOTATIONS

Symbols Meaning

x, xu, xb The positions in 3D of the UAV, user, and BS,
respectively (Section II).

x̄s The point on the 2D horizontal plane x3 = Hs such
that x, xu, and (x̄s, Hs) are collinear (Section III-A).

x̄, x̄u, x̄b The points where x, xu, and xb are, respectively,
projected on the 2D plane x3 = Hs (Section III-A).

du(x), db(x) Distances from the UAV at x to the user xu and BS
xb, respectively (Section II-A).

Dk The set of UAV locations x such that the UAV-user
link is in the kth propagation region (Section II-A).

fk(du, db)(x) The system cost function when the UAV locates in the
kth propagation region Dk (Section II-B).

f̃k(l, ⇢, ✓) The same cost function fk expressed using the angular
coordinate (l, ⇢, ✓) (Section III-B).

Fk(⇢, ✓) The cost function f̃k(l⇤(⇢, ✓), ⇢, ✓) where the variable
l has been optimized (Section III-B).

Pk The set of UAV positions on x3 = Hs using the
(⇢, ✓)-coordinates such that x 2 Dk (Definition 2).

assumed for the BS-UAV link, where db(x) , kx � xbk2 is
the UAV-BS distance.

On the other hand, the UAV-user link can be modeled as

[gu(x)]dB =

(
b1 � a1 log10 du(x) + ⇠1,

b2 � a2 log10 du(x) + ⇠2,

LOS
NLOS

(1)

where du(x) , kx�xuk2 is the UAV-user distance, ak and bk

are the path loss parameters, and ⇠k are random variables to
capture the shadowing. Conventionally, LOS is defined as the
scenario where the direct propagation path is not obstructed;
otherwise, the link is in NLOS.

In a more general setting, the system may have the ability to
identify multiple degrees of LOS obstruction. We extend the
classical channel model (1) to the K-segment case. Define Dk

as the set of UAV locations in which the direct path of the
UAV-user link experiences degree-(k� 1) of LOS obstruction
as shown in Fig. 1. As a result, UAV-user channel in a large
timescale can be written as

[gu(x)]dB =
KX

k=1

(bk � ak log10 du(x) + ⇠k)I{x 2 Dk} (2)

where I{A} is an indicator function taking value 1 if condition
A is satisfied, and 0 otherwise. Intuitively, the more propaga-
tion regions Dk to identify, the smaller the variance of ⇠k,
which captures the residual shadowing due to reflection and
diffraction. Such an observation was experimentally validated
in [26] and [27].

In addition, we impose two regularization conditions to
shape Dk as shown in Fig. 1-(b):

A1) Increasing the altitude of the UAV will lower the
degree of LOS obstruction, and

A2) The feasible UAV positions that are in line with a given
user position are in the same propagation region.

An illustrative example is given in Fig. 1-(b), where, for a user
at xu, all UAV positions on the dashed ray belong to obstructed
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(a) UAV relay network (b) Multi-segment propagation model

Figure 1. (a) The UAV may adjust its position in 3D to avoid signal blockage (grey area) from the user. (b) Multi-segment propagation model: (1) When
the UAV moves upwards, it will experience a smaller degree of obstruction; (2) When the UAV moves along the black dashed line, it travels along the same
propagation segment (i.e., same degree of obstruction).

line-of-sight (OLOS). On the other hand, if the UAV increases
its altitude from the dashed line, it may enter LOS. Note that
any channel measurement data can be fit to model (2) with
conditions A1) and A2) imposed.

We do not make any assumption on the statistics of ⇠k in
(2), but we assume that the propagation condition I{x 2 Dk}

can be perfectly determined along the search path x(t) of the
UAV. In practice, hypothesis testing or other statistical learning
methods can be applied to determine I{x 2 Dk} from the
measurement data [9, 28, 29].

B. Problem Formulation
We explain our general formulation from an example, where

a UAV serves as a relay that employs a decode-and-forward
strategy to connect the BS with the user. One may wish to
maximize the end-to-end capacity2

�f(x) , min
n
log2(1+bE

�
gb(x)

 
), log2(1+uE

�
gu(x)

 
)
o

(3)
where the expectation is taken over the randomness of the
residual shadowing ⇠k, and hence, E{gb(x)} and E{gb(x)}
give the average signal-to-noise ratio (SNR). The first term in
(3) captures the approximate spectrum efficiency of the UAV-
BS link and the second term captures that of the UAV-user
link, in which, the parameters u and b characterize the SNR
back off due to the discrete transmission power control, the
discrete choice of modulation schemes, coding loss, small-
scale fading and shadowing statistics, etc. In (3), the cost only
depends on the distance db(x) or du(x) and the LOS condition
I{x 2 Dk}. As a result, (3) can be equivalently written as
a decomposable form f(x) =

P
K

k=1 fk(du(x), db(x))I{x 2
Dk}, where the sub-function fk corresponds to the objective
f(x) in (3) evaluated under the condition that the UAV locates
in the kth propagation region Dk, i.e., I{x 2 Dk} = 1.

It is important to note that in (3), the objective f(x)
is discontinuous in x due to the indicator function in (2),
whereas, the sub-functions fk’s are continuous in x.

2The negative sign is because we want to unify our formulation as
minimizing a “cost” function.

Similar to the above example, many UAV positioning prob-
lems can be formulated into the following general form:

P : minimize
x2R3

KX

k=1

fk(du, db)(x)I{x 2 Dk} (4)

subject to Hmin  x3  Hmax

where fk(z, y)(x) is a short-hand notation for fk(z(x), y(x)),
which is the specific cost if the link is in the kth propagation
condition. The constant Hmin is assumed to be larger than the
height of the tallest building.

Finally, it is natural to assume that the cost sub-functions
fk satisfy the following two mild conditions:

A3) The cost fk for each propagation segment k is non-
decreasing with the distances du and db, respectively,
and,

A4) The cost in a less obstructed region is smaller than the
one in a more obstructed region:

fk(du, db)(x)  fk+1(du, db)(x) (5)

for k = 1, 2, . . . ,K � 1.
It can be easily verified that the example formulation (3)
satisfies these two conditions.

III. DESIGN OF THE ALGORITHM

In this section, we first show that, to find the optimal
position in 3D, it suffices to search on a 2D horizontal plane
x3 = Hs under an arbitrary altitude Hs, Hmin  Hs  Hmax.
The intuition is that, if the UAV position x is known to belong
to D2, then all the positions along the dashed line are in D2

(see Fig. 1-(b)), and hence, the UAV need not explore the
entire dashed line.

To exploit such a property, this section first develops an
angular coordinate system (l, ⇢, ✓), and then, shows how
to transform the 3D cost functions fk(x) into 2D proxy
segment cost functions Fk(⇢, ✓) by first optimizing over l.
Finally, based on Fk(⇢, ✓), a low complexity search strategy
is developed to find the optimal position in 3D.
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Figure 2. Geometric interpretation of the angular transformation. The coor-
dinate (x̄s, Hs) on the search plane x3 = Hs is transformed to (⇢, ✓).

A. Angular Coordinate System

Recall that x, xu, and xb represent the UAV position, the
user position and the BS position, respectively, in 3D. As
shown in Fig. 2, Let (x̄s, Hs) be the point where the line
segment joining x and xu intersects with the search plane
x3 = Hs, i.e., x̄s 2 R2 is a point on the x3 = Hs plane
such that the three points x, xu, and (x̄s, Hs) are collinear. In
addition, denote (x̄, Hs), (x̄u, Hs), and (x̄b, Hs) as the points
where x, xu, and xb are projected on the search plane x3 = Hs,
respectively. Denote l , kx � xuk2, ⇢ , kx̄s � x̄uk2, and ✓

as the angle from vector x̄b � x̄u to vector x̄s � x̄u. One can
verify that the UAV position x = (x1, x2, x3) can be uniquely
represented by the angular coordinates (l, ⇢, ✓).

Using the geometric relation, the transformation from
(x1, x2, x3) to (l, ⇢, ✓) is:

l(x) = kx� xuk2 (6)

⇢(x) =
Hs

x3
kx̄� x̄uk2 (7)

✓(x) = sign(z2u1 � z1u2) · arccos
�
zTu/kzk

�
(8)

where z = (z1, z2) , x̄�x̄u, u = (u1, u2) , (x̄b�x̄u)/kx̄b�

x̄uk is the reference direction pointing from x̄u to x̄b, and
sign(x) = 1 if x > 0, and sign(x) = �1, otherwise.

In turn, the transformation from the angular coordinates
(l, ⇢, ✓) to the Cartesian coordinates x = (x1, x2, x3) can be
computed as

x(l, ⇢, ✓) = l
(x̄s(⇢, ✓), Hs)� xu

k(x̄s(⇢, ✓), Hs)� xuk
(9)

where x̄s(⇢, ✓) = x̄u + ⇢M(✓)u, and

M(✓) =


cos ✓ � sin ✓
sin ✓ cos ✓

�

is a rotation matrix.

B. The Proxy Cost Function on the 2D Search Plane

Given the propagation condition observed at the search po-
sition (x̄s(⇢, ✓), Hs), the cost at every l can be mathematically
computed, since they are under the same propagation condition
according to property A2) as illustrated in Fig. 1-(b).

In the following, we define the proxy segment cost Fk(⇢, ✓)
on the 2D search plane by first transforming fk(x) to
f̃k(l, ⇢, ✓) using the coordinate transform and then minimizing
f̃k(l, ⇢, ✓) over l.

First, using the coordinate transformation (6)–(8), problem
P can be equivalently written in the form of (l, ⇢, ✓) as

P 0 : minimize
⇢�0,✓2(�⇡,⇡), l2L(⇢)

KX

k=1

f̃k(l, ⇢, ✓)I{x(l, ⇢, ✓) 2 Dk}

where f̃k(l, ⇢, ✓) , fk(du, db)(x(l, ⇢, ✓)) and

L(⇢) =

⇢
l :

Hmin

Hs

p
⇢2 +H2

s  l 
Hmax

Hs

p
⇢2 +H2

s

�
.

(10)
Second, observed that problem P 0 can be decomposed into

an inner problem

minimize
l2L(⇢)

KX

k=1

f̃k(l, ⇢, ✓)I{x(l, ⇢, ✓) 2 Dk} (11)

which minimizes over l and an outer problem which minimizes
over ⇢ and ✓. Given (⇢, ✓), the inner problem can be further
written into K subproblems each minimizing f̃k(l, ⇢, ✓) over
l.

Let
l
⇤
k
(⇢, ✓) , arg min

l2L(⇢)
f̃k(l, ⇢, ✓) (12)

be the solution to the kth inner subproblem of P 0. In the
example shown in Fig. 1-(b), l⇤

k
(⇢, ✓) corresponds to the local

optimal position along the black dashed line, with (⇢, ✓) being
the coordinate obtained from (7)–(8) for a given x.

The cost evaluated at local optimal point (l⇤
k
(⇢, ✓), ⇢, ✓) for

the kth propagation condition is then defined as the proxy
segment cost Fk(⇢, ✓) as follows.

Definition 1 (Proxy Segment Cost). The proxy cost for the
kth segment is defined as

Fk(⇢, ✓) , f̃k(l
⇤
k
(⇢, ✓), ⇢, ✓). (13)

In addition, the proxy cost F (⇢, ✓) on the 2D search plane
is defined as follows.

Definition 2 (Proxy Cost). The proxy cost at the search
coordinate (⇢, ✓) on the search plane is defined as

F (⇢, ✓) ,
KX

k=1

Fk(⇢, ✓)I{(⇢, ✓) 2 Pk} (14)

where Pk ,
�
(⇢, ✓) : x(l⇤(⇢, ✓), ⇢, ✓) 2 Dk

 
is the kth prop-

agation segment expressed in the angular coordinate system.

The following establishes the connection between the proxy
segment cost Fk(⇢, ✓) and the segment cost F (⇢, ✓).

Proposition 1. Given (⇢, ✓) to examine the propagation con-
dition at an arbitrary position l 2 L(⇢). If x(l, ⇢, ✓) 2 D

k̂
for

some k̂, then, F (⇢, ✓) = F
k̂
(⇢, ✓).

Proof. Define l
⇤(⇢, ✓) as the solution to the inner subproblem

(11) of P 0. Property A2) and our construction of the angular
coordinate system imply that, given a fixed search coordinate
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(a)

(b)

Figure 3. (a) The running best objective value (projected to the search plane)
discovered along the search path, the black curve. (b) The corresponding
search path on the search plane.

(⇢, ✓), all possible UAV positions x(l, ⇢, ✓) belongs to the
same propagation condition x(l, ⇢, ✓) 2 D

k̂
for some k̂.

This property justifies that l
⇤(⇢, ✓) = l

⇤
k̂
(⇢, ✓). As a result,

I{(⇢, ✓) 2 P
k̂
} = I{x(l⇤, ⇢, ✓) 2 D

k̂
} = I{x(l⇤

k
, ⇢, ✓) 2 D

k̂
},

and hence, F (⇢, ✓) = F
k̂
(⇢, ✓).

Following the above property, problem P 0 can be further
transformed into a 2D search problem

P 00 : minimize
⇢�0,�⇡✓⇡

F (⇢, ✓)

which drives the following algorithm design.

C. Algorithm Design

The main idea of the search strategy is described as follows
with full technical details given in Algorithm 1.

1) K = 2 Case: In the two segment case, the algorithm
performs in two phases. In phase 0, the UAV starts from the
BS location x̄b and moves towards the user at x̄u on the search

Algorithm 1 Search Strategy for the Optimal UAV Position
Choose a step size � > 0. The search is carried out on a 2D
search plane x3 = Hs using the coordinates (⇢, ✓) defined in
(6)–(8).

1) Search along ✓ = 0: Find the critical points ⇢
0
k
, k =

1, 2, . . . ,K, defined as the solution to

minimize
⇢�0, (⇢,0)2

Sk
j=1 Pj

Fk(⇢, 0) (15)

Initialize Fmin = F1(⇢01, 0), (⇢̂, ✓̂) = (⇢01, 0), and k = 1.
2) Search on the right branch: Set (⇢, ✓) (⇢0

k
, �/⇢

0
k
).

3) Proceed according to the following two statuses
a) Virtual LOS: If (⇢, ✓) 2

S
k

j=1 Pj , update according
to

⇢ ⇢+ �. (16)

If Fk(⇢, ✓) < Fmin, then update the record Fmin  

Fk(⇢, ✓) and (⇢̂, ✓̂) (⇢, ✓).
b) Virtual NLOS: If (⇢, ✓) 2

S
K

j=k+1 Pj , update accord-
ing to

⇢ ⇢+ �, ✓  ✓ + �

⇣
�

@Fk

@✓

⌘�1 @Fk

@⇢
(17)

where � > 0 is chosen such that the UAV position
change satisfy the step size k�x̄sk2 = �.

Repeat this step until either (i) ⇢ �
Hs

Hmin
L cos ✓ or (ii)

@Fk(⇢, ✓)/@⇢ � 0, where L , kx̄b � x̄uk2.
4) Search on the left branch: Set (⇢, ✓)  (⇢0

k
,��/⇢

0
k
).

Repeat from Step 3).
5) Let k  k + 1. Repeat from Step 2) until k > K � 1.
6) If FK(⇢0

K
, 0) < Fmin, then Fmin  FK(⇢0

K
, 0) and

(⇢̂, ✓̂) (⇢0
K
, 0).

The optimal position is given by x(l⇤(⇢̂, ✓̂), ⇢̂, ✓̂) from (9).

plane x3 = Hs, until it detects the LOS and NLOS boundary.
The search then enters to phase 1.

In phase 1, the UAV moves according to the two possible
conditions it detects. If it is in the LOS segment, it moves
away from the user by increasing ⇢ until the new position
does not decrease the proxy segment cost F1(⇢, ✓) any more
or until the UAV enters in NLOS. If it is in the NLOS segment,
it moves along the contour specified by F1(⇢, ✓) = constant.
The search continues until the stopping criterion is met, i.e.,
either ⇢ �

Hs
Hmin

cos ✓kx̄b � x̄uk2 or @Fk(⇢, ✓)/@⇢ � 0, or
until the UAV enters in the LOS as illustrated in Fig. 3. The
stopping criteria will be explained in Section IV.

2) K > 2 Case: For the multiple propagation segment case,
the algorithm has K phases. In the kth phase, the segmentS

k

j=1 Di (or
S

k

j=1 Pi in the polar domain) is treated as a
virtual LOS segment, and the rest is treated as a virtual NLOS
segment. The UAV follows the search strategy specified in
phase 1 of the K = 2 case until the stopping criterion is
met. It will be shown in Section IV-C that when the whole
algorithm terminates, the globally optimal UAV position must
have been visited by the trajectory that the UAV has visited.
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D. Detecting Propagation Segment
Algorithm 1 requires detection on the propagation segment

x 2 Dk along the search trajectory x. In practice, the detec-
tion can be realized using a maximum likelihood estimation
method. For the kth propagation segment, let hk(u) be the
probability density function of the random variable ⇠k in the
model (2). Then, given the channel gain measurement y in
decibel at UAV location x, one can pick propagation segment
k̂ that maximizes the likelihood function

k̂ = argmax
k=1,2,...,K

hk(y � bk + ak log10 du(x)).

In particular, if ⇠k is further modeled as a Gaussian random
variable with variance �

2
k
, then, the detection rule can be

further derived as

k̂ = argmin
k=1,2,...,K

1

�k

|y � bk + ak log10 du(x)| .

The above detection method implicitly assumes the knowl-
edge of propagation parameters ak, bk, and �k, which can be
obtained either from a separate training phase or from Step 1
in Algorithm 1. In the latter case, the UAV first searches on
the BS-user axis to collect channel measurements, and then
performs parameter estimation for ak, bk, and �k [28, 30].

IV. COMPLEXITY AND OPTIMALITY ANALYSIS

In this section, we focus on the algorithm analysis for two
types of cost functions fk(x, y):

Type I. For every x, y > 0, fk(x, y) > 0,
@fk(x,y)

@x
,
@fk(x,y)

@y
> 0, @

2
fk(x,y)
@x@y

= 0, and

@
2
fk(x, y)

@x2
�

1

x

@fk(x, y)

@x
� 0 (18)

@
2
fk(x, y)

@y2
�

1

y

@fk(x, y)

@y
� 0. (19)

Type II. There exist continuous, positive, and strictly in-
creasing functions f

(1)
k

(x) and f
(2)
k

(y) for x, y > 0, such that

fk(x, y) = max{f (1)
k

(x), f (2)
k

(y)}. (20)

Note that convexity is not required, and recall that, in our
formulation P , the arguments x and y in fk(x, y) correspond
to the distances du(x) and db(x), respectively. These two types
of cost functions have a vast of applications as will be seen in
Section V. Examples of Type I functions include the outage
probability as a function of path loss with respect to (w.r.t.)
the distances in a relay channel [31, 32]. Examples of Type II
functions are the end-to-end ergodic capacity (with a negative
sign) of a relay channel [32, 33].

A. Unique Local Minimizer in the Proxy Segment Cost
Fk(⇢, ✓)

It can be found that Fk(⇢, ✓) has a unique local minimizer
⇢
⇤
k
(✓) for each ✓, justifying the stopping criterion (ii) in

Algorithm 1.
First, it can be shown that f̃k(l, ⇢, ✓) is quasiconvex and

l
⇤
k
(⇢, ✓) is a unique local minimizer. Recall that a quasiconvex

function f(x) is a function of which the sub-level set C↵ =

{x : f(x)  ↵} is convex. Moreover, a function f(x) is strictly
quasiconvex if f(�x1 +(1��)x2) < max{f(x1), f(x2)} for
any 0 < � < 1 and x1 6= x2. Thus, the following result can
be established.

Proposition 2 (Unique Partial Minimizer I). For Type I and
Type II cost functions, f̃k(l, ⇢, ✓) is strictly quasiconvex in l

and admits a unique local minimizer l
⇤
k
(⇢, ✓) in L(⇢), i.e.,

@f̃k/@l < 0 for l < l
⇤
k
(⇢, ✓) and @f̃/@l > 0 for l > l

⇤
k
(⇢, ✓).

Proof. See Appendix A.

Proposition 2 implies that l⇤(⇢, ✓) can be found efficiently
using algorithms such as bisection search. The solution can
be obtained in

l
log2

⇢�H

✏Hs

m
steps, where ✏ > 0 is the error

tolerance and �H = Hmax �Hmin.

Proposition 3 (Unique Partial Minimizer II). For Type I and
Type II cost functions, the proxy cost function Fk(⇢, ✓) is
strictly quasiconvex in ⇢, and there is a unique local minimizer
⇢
⇤
k
(✓) of Fk(⇢, ✓), i.e., Fk(⇢1, ✓) > Fk(⇢2, ✓) for ⇢1 < ⇢2 <

⇢
⇤
k
(✓), and Fk(⇢3, ✓) < Fk(⇢4, ✓) for ⇢

⇤
k
(✓) < ⇢3 < ⇢4.

Proof. See Appendix B.

As Fk(⇢, ✓) has a unique local minimum ⇢
⇤
k
(✓) for each

✓, there is no need to search in ⇢ � ⇢
⇤
k
(✓), corresponding to

the region satisfying @Fk(⇢, ✓)/@⇢ � 0, which is the stopping
criterion (ii) in Algorithm 1.

B. Linear Search Complexity and Quasilinear Computational
Complexity

1) Linear Search Complexity: The search complexity is
defined as the length of the UAV search path. We first show
the following result for the stopping criterion (i) in Algorithm
1.

Proposition 4 (Search Region). The solution ⇢
⇤
k
(✓) that min-

imizes Fk(⇢, ✓) satisfies ⇢
⇤
k
(✓)  Hs

Hmin
L cos ✓.

Proof. Please refer to Appendix C.

Then, as a result of Proposition 4, it can be shown that the
worst-case search length of Algorithm 1 is a linear function
of the radius of the target area.

Theorem 1 (Maximum Trajectory Length). The length of
the search trajectory from Algorithm 1 is upper bounded by
(2.4K � 1.4) Hs

Hmin
L.

Proof. (Sketch) One can show that the iteration in Step 3 never
decreases ⇢ and ✓. On the other hand, the search region is
bounded due to Proposition 4. Therefore, the search length is
only linear in the scale of the target area. The detail calculation
is similar to the case studied in [9, Theorem 2].

The sampling complexity is thus upper bounded by (2.4K�
1.4) Hs

Hmin
L/�, with � being the step size in Algorithm 1. As a

comparison, a naive exhaustive search may require O(L3
/�)

search complexity.
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2) Quasilinear Computational Complexity: The computa-
tional complexity of the proposed algorithm is dominated
by the number of evaluations of the proxy segment cost
function Fk(⇢, ✓), which involves

l
log2

⇢�H

✏Hs

m
evaluations of

the original cost function f as previously discussed following
Proposition 2. In particular, computing the search direction
in (17) involves four evaluations of Fk using the differential
formula in (17). Then, it can be shown that the complexity
is upper bounded by (10.6K � 9.6)(log2 L � log2 ✏Hs)

L

�
,

which is roughly O(KL logL/�) in term of the number of
evaluations of Fk. Again, a naive exhaustive algorithm may
require O(L3

/�) complexity.

C. Global Optimality

Somewhat surprisingly, we can show that, although the
search has a linear length, the algorithm can find the globally
optimal position in 3D with an arbitrary number of propagation
segments.

An intuitive explanation on the global optimality is as
follows. First, as a result of the specialized angular coordinate
system (l, ⇢, ✓) developed in Section III-A, the optimal solu-
tion l

⇤(⇢, ✓) given (⇢, ✓) can be analytically computed without
navigating the UAV to physically search along l. Thus, the 3D
spatial search problem degenerates to a 2D one. Second, under
some mild conditions on the original cost functions fk(x, y)
in (4), the proxy cost functions Fk(⇢, ✓) in (13) has some nice
properties, such as the uniqueness of the local minimizer ⇢⇤

k
(✓)

for each ✓, that can be exploited by Algorithm 1. Studying
these key features, global optimality in 3D can be established
as follows.

Consider a continuous-time algorithm trajectory x(t), which
is obtained from Algorithm 1 using infinitesimal step size
� = dt at each infinitesimal time slot dt. Correspondingly,
the time series of the minimum cost Fmin(t) and (⇢̂(t), ✓̂(t))
defined in Algorithm 1 are continuous-time processes.

Theorem 2 (Global Optimality). For Type I and Type II cost
functions, the process (⇢̂(t), ✓̂(t)) from Algorithm 1 converges
to the globally optimal solution (⇢⇤, ✓⇤) to problem P 00 in
finite time t = T < 1. In addition, the corresponding
x(l⇤(⇢⇤, ✓⇤), ⇢⇤, ✓⇤) obtained from (9) is the globally optimal
solution to problem P .

Proof. (Sketch) One can easily establish the following prop-
erty

min
⇢�0

Fk(⇢, ✓
0)  min

j�k

min
⇢�0,✓✓0

>0
|✓0||✓|⇡/2

Fj(⇢, ✓) (21)

for given any ✓
0
6= 0. To see this, we note that Fk(⇢, ✓) =

f̃k(l⇤(⇢, ✓), ⇢, ✓) from Definition 1 and f̃k(l, ⇢, ✓0) <

f̃k(l, ⇢, ✓) for any ⇢ � 0 and l 2 L(⇢), because the UAV-
BS distance db increases when increasing |✓| (see Equation
(25)), but the UAV-user distance du = l remains unchanged.

As Algorithm 1 is identical to [9, Algorithnm 1], which
was developed on the 2D case, except for the construction of
Fk(⇢, ✓). We also note from (21) and Propositions 3 and 4
that, the proxy segment cost functions Fk(⇢, ✓) have the same
properties as those discussed in [9, Theorem 1]. Therefore,

Algorithm 1 finds the globally optimal solution to P 00. Due
to the equivalence from the angular transformation, the global
optimality of the 3D problem P is thus confirmed. One can
follow [9, Appendices C, D] for the details of the proof.

V. APPLICATIONS

In this section, we list three example formulations for P .
The objective functions of the first two examples respectively
match with the Type I and Type II conditions in Section
IV-A. The objective of the third example does not match
with either of the conditions. We will numerically evaluate
the performance of these applications in an actual urban city
topology in Section VI.

A. Minimize the Outage Probability

Consider the deployment of a relay network to lower the
link outage probability under a certain end-to-end target data
rate. The UAV relay operates in an amplify-and-forward (AF)
mode, where it simply redirects the signal from the BS to the
user by amplifying the signal. Specifically, denote the received
signal at the UAV relay as yr =

p
Pbgr,bar,bs + nr, where Pb

is the transmit power at the BS, gr,b is the large scale fading
including the path loss and shadowing of the BS-UAV link,
ar,b is a random variable to model the small scale fading, and
s, nr ⇠ CN (0, 1) models the transmit signal and receive noise,
respectively.

Under the AF mode, the relay signal is given by sr =
yr/

p
Pbgr,b|ar,b|2 + 1 where the denominator is a scaling fac-

tor to normalize the transmission power at the UAV. The
receive signal at the user is thus given by yu =

p
Prgu,rau,rsr+

nu, where Pr is the transmit power at the UAV, gu,r and au,r are
the large scale fading variable and small scale fading variable
of the UAV-user link, respectively. Finally, nu ⇠ CN (0, 1) is
the receive noise. We assume that |ar,b|

2 and |au,r|
2 follow

exponential distribution with parameter � = 1, a common
assumption of Rayleigh fading channels.

The relay channel capacity is given by CAF = 1
2 log2(1 +

q(Pbgr,b|ar,b|
2
, Prgu,r|au,r|

2)), where q(x, y) , xy((x+ y + 1)
and the constant 1

2 is to capture the fact that the signal
requires two time slots to reach the user [31, 32]. The outage
probability w.r.t. a target data rate R can be shown to be
P{CAF < R} ⇡ ( 1

Pbgr,b
+ 1

Prgu,r
)(22R � 1)2 under high SNR,

i.e., Pbgr,b, Prgu,r � 1 [32, Lemma 1].
To minimize the outage probability P{CAF < R} for the

large-scale propagation statistics and LOS conditions, one can
formulate problem P by choosing

fk(du, db) =
1

Pb�0d
�↵0
b

+
1

Pr�kd
�↵k
u

, k = 1, 2, . . . ,K

(22)
where �k is approximately 10bk/10 and ↵k = ak/10 for
ak, bk given in (2). One can verify that the objective function
fk satisfies the Type I condition. Hence, from Theorem 2,
Algorithm 1 will find the globally optimal UAV position in
3D space.
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B. Maximize the Capacity
Consider a decode-and-forward (DF) relay system where

the UAV servers as a relay. The relay channel capacity of
such a DF system can be shown to be CDF = 1

2 min{log2(1+
Pbgr,b|ar,b|

2), log2(1 + Prgu,r|au,r|
2)} [32, 33]. In an actual

system, the averaged achievable data rate will depend on the
average SNR Pbgr,b and Prgu,r through a number of factors
such as channel fading, channel coding schemes, modulation
schemes, and rate adaptation strategy. As discussed in [34],
this process can be abstracted using a discount factor ,
0 <  < 1, resulting in a simplified, but widely-used model
for the effective SNR. Then, the relay capacity is given by
CDF = 1

2 min{log2(1 + Pbgr,b), log2(1 + Prgu,r), rmax}.
Based on the analysis in [34], a typical choice of  is  = 0.5.

To maximize the relay channel capacity, one populates
problem P by choosing

fk(du, db) =
1

2
min{log2(1 + Pb�0d

�↵0
b ), (23)

log2(1 + Pr�kd
�↵k
u ), rmax}

for k = 1, 2, . . . ,K, with �k = 10bk/10 and ↵k = ak/10
according to (2).

One can verify that the objective function fk satisfies the
Type II condition. Hence, from Theorem 2, Algorithm 1 will
find the globally optimal UAV position in 3D space.

Note that our formulation (23) ignores the residual shad-
owing ⇠k in (2), and hence, the optimal solution to P only
results in a sub-optimal solution in practice. Nevertheless, the
numerical study in Section VI-E shows that, compared to the
baseline, the performance obtained from optimizing (23) is
already quite close to a genie-aided one that takes into account
the residual shadowing ⇠k and requires exhaustive search in
3D.

C. Energy Minimization for Data Collection
Suppose that the UAV needs to navigate to a remote location

and deliver B message bits to a user using a DF relay strategy.
We assume that the UAB-BS link is strong enough, and hence,
the end-to-end capacity is given by the capacity of the UAV-
user link ru(du) = 1

2 min{log2(1 + Prgu,r(d)), rmax}. To
further simplify the problem, we assume that the UAV only
transmits when it reaches the desired position.3 A related
problem with similar arguments was also studied in [8] under
a more complex multi-hop scenario, but we want to keep the
example simple here for clarity. The required transmission
time is ttx = B/(Wru(d)), where W is the bandwidth.

Denote Pcruise, Phover, and Pcircuit, as the UAV cruise power,
the UAV hover power, and the circuit power for data process-
ing, respectively. Note that, in reality, the power consumption
may depend on various factors such as the the UAV speed.
If we focus on the operation under a constant UAV speed,
then the cruise power Pcruise is roughly constant. Thus, the
power consumed at the navigation phase is Pcruised/v and
the energy consumed at the transmission phase is (Phover +

3We also observe from numerical experiments that the UAV is mostly in
deep shadowing during its course to the target position. In this case, the
transmission during the UAV navigation phase is negligible.

Figure 4. (Left) An orthoimagery of an 800 [m] ⇥ 800 [m] area in
Washington DC, USA. (Right) The corresponding elevation map of buildings
and vegetation. The BS is placed at the red triangle with 45 meter height.

Pcircuit + Pr)B/(Wru(d)), where d is the distance from the
initial UAV position and v is the speed.4 Therefore, the total
energy consumed to deliver the total B bits is given by
E = Pcruise

d

v
+ (Phover+Pcircuit+Pr)B

Wru(d)
.

To optimize for the large-scale propagation characteristics
and LOS conditions, the target UAV position that minimizes
the total energy consumption E can be found by solving
problem P , where the objective function can be chosen as,
for k = 1, 2, . . . ,K,

fk(du, d) = Pcruise
d

v
+

(Phover + Pcircuit + Pr)B
1
2W · min{log2(1 + Pr�kd

�↵k
u ), rmax}

.

One can verify that fk is increasing in both du and d,
respectively. However, fk does not satisfy either Type I or Type
II conditions. Therefore, the global optimality of Algorithm
1 for such an energy minimization problem is still unclear.
However, as will be observed from the numerical experiments
in Section VI-F, the performance between Algorithm 1 and
that of an exhaustive search is nearly indistinguishable.

VI. NUMERICAL RESULTS

A. Propagation Environment Modeling

We study the city environment using the geographical data
captured in central Washington DC, USA in 2013.5 Fig. 4
shows the orthoimagery of an 800 m ⇥ 800 m area of
interest and the corresponding elevation map. In this area,
the maximum building height is 45 meters. Building areas
are designated by black polygons, whereas, the colored pixels
outside the building areas represent the urban vegetation. The
BS antenna is placed at 45 meter height. For each experiment
below, we evaluate 10,000 uniformly random user locations in
the non-building area. The minimum UAV height is set to 45
meters to avoid collision with any building while maintaining
LOS condition with the BS; the maximum height is 120 meters
to obey the US regulation.

4We assume that the UAV consumes the same power Pcruise regardless of its
direction of mobility. Such an approximation is motivated from the experiment
results in [35], where there is only 10% power difference between the UAV
ascending and UAV hovering.

5The original data was obtained from the USGS database:
http://ngmdb.usgs.gov. The processed dataset is available at IEEE DataPort
with DOI: 10.21227/y6gg-j788.
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Table II
DEFAULT NETWORK PARAMETERS

Parameter Description

BS Located at (150, 770, 45) in Fig. 4 (red triangle)
User Uniformly dropped at the ground level in the

non-building area
Carrier frequency 2.5 GHz (3GPP), 28 GHz (mmW)
Bandwidth 20 MHz (3GPP), 500 MHz (mmW)
Transmit power 33 dBm (BS), 30 dBm (UAV)
Noise figure 7 dB
Antenna (3GPP) Single antenna
Antenna (mmW) 4 ⇥ 4 half-wavelength uniform planar array with

20 dB beamforming gain
Path loss (LOS) 3GPP: 22.0 + 28.0 log10(d) + 20 log10 fc,

mmW: 61.4 + 20.0 log10(d), �SF = 1 dB
Path loss (OLOS) 3GPP: 32.0 + 28.0 log10(d) + 20 log10 fc,

mmW: 81.4 + 20.0 log10(d), �SF = 3 dB
Path loss (NLOS) 3GPP: 22.7 + 36.7 log10(d) + 26 log10 fc,

mmW: 72.0 + 29.2 log10(d), �SF = 5 dB
UAV power 200 W (cruise), 200 W (hover), 2 W (circuit)
UAV configuration Speed: 5 m/s, Minimum height: 45 m, Maximum

height: 120 m

We employ a ray-tracing method to identify three propa-
gation conditions: LOS, if there is no building or vegetation
blocking the direct ray from the transmitter to the receiver,
OLOS, if there is only vegetation blockage of the direct ray,
and NLOS, if there is a building that blocks the direct ray.
Corresponding path loss models and shadowing parameters
�SF are used as specified in Table II. The residual shadowing
is modeled as N (0,�2

SF).

B. Air Interface

We evaluate two air interfaces. One transmits at 2.5 GHz
with propagation parameters taken from the 3GPP Urban
Micro (UMi) model in [36]. The other transmits at 28 GHz
with parameters taken from the experiment results reported
in [37]. Since both the standard cellular model [36] and the
experiment in [37] consider only two propagation scenarios,
LOS and NLOS, we simulate the parameter for the OLOS
condition by adding 10 dB (3GPP case), or 20 dB (mmW
case), vegetation penetration loss from the LOS models in
[36] and [37], respectively.

For millimeter wave (mmW) links, we assume half-
wavelength 4⇥ 4 uniform planar arrays at the BS transmitter,
UAV transceiver, and the user receiver. The beamforming is
computed using channel statistics. Experimental results in [37]
showed that a 9–12 dB gain under long-term beamforming can
usually be achieved at the user side. Therefore, we assume a
20 dB beamforming gain combined from both the transmitter
and receiver. The key parameters are summarized in Table II.

C. Baseline Schemes and Observations

We evaluate the UAV placement method in Algorithm 1
with step size � = 3 meters; we compare performance with
the following four baseline schemes:

3

Figure 4. (Left) An orthoimagery of an 800 [m] � 800 [m] area in Washington DC, USA. (Right) The corresponding elevation

map of buildings and vegetation. The BS is placed at the red triangle with 45 meter height.
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• Direct BS-user link: The scheme transmits at the direct
BS-user link, without the help of the UAV relay. In the
urban topology depicted in Fig. 4, we numerically found
that there are only 3.3% users in LOS condition to the
BS and less than 20% users in OLOS condition. The
LOS ratio at the 89 degree elevation angle corresponds
to the fact that roughly 20% of the street is covered by
vegetation as shown in Fig. 4.

• Statistical Method: Define pk('(x)) = P{x 2 Dk

��'}

as the conditional probability of the UAV position x
belonging to the kth propagation segment given the
elevation angle ' from the user to the UAV. The empirical
distributions pk(') are obtained in an offline mode from
a large amount of channel measurement data over various
user and UAV positions in Fig. 4. The results are plotted
in Fig. 5. Given pk('), the UAV position is obtained by
solving

P 0
stat : minimize

x2R3

KX

k=1

fk(du, db)pk('(x))

subject to Hmin  x3  Hmax

using an exhaustive search algorithm. Note that under
K = 2, this method is conceptually identical to the
probabilistic LOS method in the literature [14, 15].

• 1D Exhaustive Search: This schemes performs an exhaus-
tive search along the BS-user axis on the x3 = Hmin

plane and finds the UAV position that minimizes the
objective function of P . The UAV relays then relays
the message to the user, while the direct BS-user link
is completely ignored.

• 3D Exhaustive Search: This schemes performs an exhaus-
tive search over a 3D lattice with 3 meter spacing. The
lattice that achieves the minimum cost in P is chosen as
the optimal UAV position.
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3

Figure 4. (Left) An orthoimagery of an 800 [m] � 800 [m] area in Washington DC, USA. (Right) The corresponding elevation

map of buildings and vegetation. The BS is placed at the red triangle with 45 meter height.
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D. Outage Probability Minimization and the Confirmation on
the Global Optimality

Consider the outage probability minimization problem in
Section V-A. The performance is evaluated using the 3GPP
Urban Micro (UMi) model and the residual shadowing is
ignored as discussed in Section V-A. We normalize the outage
probability in (22) from various UAV schemes by the outage
probability of the direct BS-user link for each user. Note
that the ratio is equivalent to the uncoded bit error rate
(BER) improvement, and the cumulative distribution functions
(CDFs) of the improvement are plotted in Fig. 6. Two cases
are evaluated using the default parameters in Table II except
for those specified in the figure.

It is observed that the proposed scheme can substantially
reduce the uncoded BER over the statistical scheme. In par-
ticular, when the UAV-to-user link is stronger, the proposed
scheme can achieve much more reduction from the statistical
scheme. This is because the proposed scheme finds a position
closer to the BS while still maintaining a good propagation
condition (such as LOS) to the user. In addition, it is observed
that the CDF curves of the proposed scheme coincide with
those from the exhaustive search, numerically confirming that
the proposed algorithm finds the globally optimal solution to
P .

E. Capacity Maximization
Consider a system that operates in a hybrid transmission

mode with an objective to maximize the capacity in Section
V-B. Specifically, if the propagation condition is in LOS or
OLOS, the mmW radio interface at 28 GHz is used for
transmission; otherwise, the 3GPP radio interface at 2.5 GHz is
used. The shadowing parameters are specified in Table II. The
algorithm optimizes P in (4) with the cost functions specified
in (23).

1) Robustness under Shadowing: Note that the formulation
in (23) ignores the shadowing when searching for the best
UAV position, while the performance is evaluated under the
presence of shadowing as specified in Table II. In other words,
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Figure 8. Average throughput under various maximum permissible UAV
height Hmax.

the globally optimal solution to P is not necessarily the
position that achieves the maximum throughout under the
presence of shadowing. In this experiment, we observe 17%
performance degradation from exhaustive search in terms of
average throughput as shown in Fig. 7.

As observed, even when the model assumptions are violated,
the proposed algorithm still yields good performance. First,
it is observed that the proposed scheme achieves more than
80% throughput of the 3D exhaustive scheme for all categories
in Fig. 7. Note that the proposed scheme only requires a
spatial search path that is linear in the diameter of the target
area, but an exhaustive search would require a cubic path. By
contrast, the statistical method perform substantially worse.
Second, for the users in deep shadow (the 20th percentile),
the proposed scheme can deliver over 2X throughput of that
from the statistical method.

2) Impact on the Maximum UAV Height Hmax: Fig. 8
demonstrates the average throughput versus the maximum
permissible UAV height Hmax under 23 dBm BS transmission
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Figure 9. Histograms of the optimal UAV positions in deviation angle and
elevation angle w.r.t. the BS-user direction.

Table III
AVERAGE LENGTH OF THE SPATIAL SEARCH TRAJECTORY

1D Search
Proposed

2D Exhaustive

Hs = 50 m Hs = 120 m

459 m 614 m 706 m 83.4 km

power and various UAV transmission power. First, we find
that the larger Hmax, the higher the average throughput. This
confirms the advantage of the 3D optimization for UAV relay
position. Second, it is also found that the larger the UAV
power, the more gain to be achieved by increasing Hmax.
Finally, for the statistical method baseline, it does not benefit
from adjusting the UAV height, because its optimal solution
is always attained at the minimum UAV height from our
experiment.

3) Statistics on the Optimal UAV Position in 3D: Fig. 9
shows the histograms of the optimal UAV positions in terms
of the deviation angle ✓ and elevation angle � w.r.t. to the BS-
user direction. It is observed that the optimal UAV positions
tend to have small deviation angle and elevation angle. Such
a property may provide insights in designing approximate
solutions to handle the practical issue of non-isotropic antenna
pattern at the BS.

4) Length of the Spatial Search Trajectory: Table III sum-
marizes the average length of the spatial search trajectory for
each scheme over 10,000 user locations. Note that performance
bottleneck is the physical length of the search path that
UAV explores over. As observed, the path lengths of the
proposed scheme under different search parameters Hs (see
Algorithm 1) are comparable to that of the 1D Exhaustive
Search baseline, numerically confirming Theorem 1, which
states that the search path has linear length in the diameter of
the target area.

F. Energy Minimization

For the energy minimization problem in Section V-C, we
also consider the hybrid transmission model discussed in

4
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Section VI-E. The UAV is required to deliver B = 10 Giga
bits to a user which may be in deep shadow at its BS-user
link.

Fig. 10 plots the distribution of the total energy consumption
for different schemes. It is observed that the proposed UAV
placement algorithm can reduce the total energy consumption
by a half from a statistical method. Moreover, the proposed
scheme significantly outperforms the 1D Exhaustive Search
method. This suggests that the optimal UAV position usually
not lies on the BS-user axis. Finally, the performance of
the proposed scheme matches with that from the exhaustive
search, which implies that the proposed Algorithm 1 still finds
the globally optimal UAV position in this special example,
despite violating the conditions in Theorem 2.

VII. CONCLUSIONS

This paper developed an efficient search algorithm to find
the globally optimal UAV position for establishing the best
relay link between a BS and a user. A key problem addressed
here was to avoid signal blockage for the UAV-to-user link.
As oppose to statistical methods, the proposed algorithm
measures the LOS condition on the fly and adapts to the
local propagation environment. The worst case search length
was shown to be bounded by a linear function of the BS-
user distance. In addition, the algorithm has been proven to
find the globally optimal UAV position in 3D for several
types of cost functions. The results were further confirmed
by numerical experiments over a real terrain topology, where
the proposed method significantly outperformed the method
based on stochastic terrain models.

APPENDIX A
PROOF OF PROPOSITION 2

A. Proof for Type I Functions

Define the squared distances as Db = d
2
b and Du = d

2
u

for simple notation. From the geometric relations between the
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three positions x, xb, and xu, and recall that L , kx̄u� x̄bk2,
we have

Du(l) = l
2 (24)

Db(l, ⇢, ✓) = L
2 sin2 ✓ +

⇣
L cos ✓ �

⇢lp
⇢2 +H2

s

⌘2
(25)

+
⇣

lHsp
⇢2 +H2

s
�Hb

⌘2

Lemma 1. Suppose that the functions Du(z) and Db(z) are
strictly convex in z. Then, for Type I function fk(x, y), the
composite function fk(D

1/2
u , D

1/2
b )(z) is strictly convex in z.

Proof. From the chain rule and the fact that du = D
1/2
u and

that fk(x, y) is non-decreasing in x and y, we have @fk

@Du
=

@fk

@du

@du
@Du

= @fk

@du

1
2
p
Du

> 0. The second order derivative is then
given by

@
2
fk

@D2
u
=

@

@Du

⇣
@fk

@du

1

2
p
Du

⌘

=
@
2
fk

@d2u

⇣
@du

@Du

⌘ 1

2
p
Du

+
@fk

@du

@

@Du

⇣ 1

2
p
Du

⌘

=
1

4d2u

⇣
@
2
fk

@d2u
�

@fk

@du

1

du

⌘
� 0

where the last inequality is from condition (18).
Similarly, we can obtain @fk

@Db
> 0 and @

2
fk

@D
2
b
� 0.

Define an operatorr asr , [ @

@z1

@

@z2
. . .

@

@zM
]T, where zm

is the mth entry of z. We have rfk = @fk

@Du
rDu +

@fk

@Db
rDb.

In addition, noticing that @
2
fk

@du@db
= 0, we arrive at

r
2
fk =

@
2
fk

@D2
u
rDurD

T
u +

@f

@Du
r

2
Du

+
@
2
f

@D
2
b
rDbrD

T
b +

@f

@Db
r

2
Db ⌫ 0

which shows that fk(D
1/2
u , D

1/2
b )(z) is convex in z. In addi-

tion, since Du(z) and Db(z) are strictly convex in z, we then
conclude that fk(D

1/2
u , D

1/2
b )(z) is strictly convex in z.

From (24)–(25), we know that Du(l, ⇢, ✓) and Db(l) are
strictly convex in l. Then, using Lemma 1, we can conclude
that fk(du, db)(l, ⇢, ✓) is strictly convex in l, and hence,
f̃k(l, ⇢, ✓) admits a unique local minimum at l⇤

k
(⇢, ✓) over the

interval L(⇢), which is convex and compact. Since it is strictly
convex, f̃k(l, ⇢, ✓) is also strictly quasiconvex.

B. Proof for Type II Functions

Exploiting the increasing functions f
(1)(x) and f

(2)(y),
we define f̃

(1)
k

(l) , f
(1)
k

(D1/2
u )(l) and f̃

(2)
k

(l, ⇢, ✓) ,
f
(2)
k

(D1/2
b )(l, ⇢, ✓). Condition (20) implies that

f̃k(l, ⇢, ✓) = max{f̃ (1)
k

(l), f̃ (2)
k

(l, ⇢, ✓)}. (26)

Lemma 2. Let f1(x) and f2(x) be positive and strictly
increasing functions. In addition, let g1(y) and g2(y) be
strictly convex functions. Then, the composite function f(y) =
max{f1(g1)(y), f2(g2)(y)} is strictly quasiconvex in y.

Proof. Suppose that y1,y2 2 C↵ = {y : f(y)  ↵}. Let
max{f(y1), f(y2)} = ↵1  ↵. Then, gi(yj)  f

�1
i

(↵1) for
both i, j 2 {1, 2}, by the strictly increasing property of fi,
where x = f

�1
i

(y) denotes the inverse function of y = fi(x).
From the strict convexity of gi, we have

gi(�y1 + (1� �)y2) < �gi(y1) + (1� �)gi(y2)

 �f
�1
i

(↵1) + (1� �)f�1
i

(↵1)

= f
�1
i

(↵1)

for both i 2 {1, 2} and � 2 (0, 1). Therefore, fi(gi)(�y1 +
(1 � �)y2) < ↵1, and hence f(�y1 + (1 � �)y2) <

↵1 = max{f(y1), f(y2)}. This concludes that f(y) is strictly
quasiconvex.

Using Lemma 2, f̃k(l, ⇢, ✓) in (26) is strictly quasiconvex
in l. We then have the following result on the optimality.

Lemma 3 (Optimality from Quasiconvexity). If f(x) is strictly
quasiconvex in a convex and closed interval I 2 R, then f(x)
admits a unique local minimum in I .

Proof. We develop the proof from contradiction. Suppose that
x0 2 I is a global minimizer of f(x), and x1 is a local min-
imizer, where x1 6= x0. As a result, f(x0) < f(x1). Without
loss of generality (w.l.o.g.), assume that x0 < x1. Choose an
arbitrarily small ✏ > 0, such that x2 = x1 � ✏ is sufficiently
close to the local minimizer x1 and f(x2) > f(x1). As a
consequence, there exists a 0 < � < 1, such that x2 =
�x0+(1��)x1. However, according to the quasiconvexity of
f(x), it holds that f(x2)  max{f(x0), f(x1)} = f(x1),
which violates the fact that x1 is a local minimum. By
contradiction, the local minimum is unique.

Using Lemma 3, one can conclude that f̃k(l, ⇢, ✓) admits a
unique local minimum l

⇤
k
(⇢, ✓) over L(⇢).

APPENDIX B
PROOF OF PROPOSITION 3

We exploit a third coordinate system to develop the results.
Consider a ✓-plane, defined as the 2D plane that is perpendic-
ular to the ground and passing through both the user position
xu and the UAV position x(l, ⇢, ✓) as illustrated in Fig. 11.
Each point x(l, ⇢, ✓) on the ✓-plane can be represented by
coordinates (y, z) as follows


y

z

�
= G✓(l, ⇢) =

2

4
l

⇢p
⇢2+H2

s

l
Hsp
⇢2+H2

s

3

5 (27)

where the mapping G✓ is invertible and the reverse trans-
formed is denoted as (l, ⇢) = G�1

✓
(y, z).

On the ✓-plane, the squared distances can derived as
D

✓

b (y, z) = L
2 sin2 ✓ + (L cos ✓ � y)2 + (z � Hb)2 and

D
✓

u (y, z) = y
2+z

2, which are strictly convex in (y, z). Define
the transformed cost function (on the ✓-plane) as

f
✓

k
(y, z) , fk((D

✓

u )
1/2

, (D✓

b )
1/2)(y, z). (28)

It turns out that f✓

k
is strictly quasiconvex in (y, z) for both

Type I and Type II functions. To see this for Type I functions,
applying Lemma 1, f✓

k
(y, z) is shown to be strictly convex in
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(a)

(b)

Figure 11. Geometric interpretation of the ✓-plane.

(y, z). Hence, f✓

k
(y, z) is also strictly quasiconvex in (y, z).

For Type II cost functions, we have

f
✓

k
(y, z) = max{f (1)

k
((D✓

u )
1/2)(y, z), f (2)

k
((D✓

b )
1/2)(y, z)}.

Using Lemma 2, f✓

k
(y, z) is strictly quasiconvex in (y, z).

We now study the monotonicity of Fk(⇢, ✓) on the interval
(0, ⇢⇤), where ⇢

⇤(✓) is the minimizer of Fk(⇢, ✓). Consider
an arbitrary ⇢1, such that 0 < ⇢1 < ⇢

⇤. Denote the co-
ordinates on the ✓-plane (y⇤, z⇤) = G✓(l⇤k(⇢

⇤
, ✓), ⇢⇤) and

(y1, z1) = G✓(l⇤k(⇢1, ✓), ⇢1), where l
⇤
k
(⇢1, ✓) is the solution

to P
0

k
given (⇢1, ✓). Note that f✓

k
(y⇤, z⇤)  f

✓

k
(y1, z1), since

⇢
⇤(✓) minimizes Fk(⇢, ✓).
In addition, for some 0 < t < 1, let y2 = ty

⇤ + (1 � t)y1
and z2 = tz

⇤+(1� t)z1. In particular, we choose an arbitrary
⇢2 satisfying ⇢1 < ⇢2 < ⇢

⇤, and we choose the parameter
t = ⇢2z1�Hsy1

⇢2(z1�z⇤)+Hs(y⇤�y1)
, so that G�1

✓
(y2, z2) = (l2, ⇢2) for

some l2. Note that l2 2 L(⇢2), because the constraint Hmin 

x3  Hmax in P is equivalent to Hmin  z  Hmax in the
✓-plane, and ⇢ � 0 is equivalent to y � 0, which imply that
the feasible domain is convex on the ✓-plane.

Using these notations, we have

f
✓

k
(y2, z2) = f

✓

k
(ty⇤ + (1� t)y1, tz

⇤ + (1� t)z1)

< max{f✓

k
(y⇤, z⇤), f✓

k
(y1, z1)}

= f
✓

k
(y1, z1)

where the inequality comes from the strict quasiconvex of f✓

k
.

As a result, we have

Fk(⇢2, ✓) = fk(du, db)(x(l
⇤
k
(⇢2, ✓), ⇢2, ✓))

 f
✓

k
(y2, z2) < f

✓

k
(y1, z1)

where the right hand side satisfies

f
✓

k
(y1, z1) = fk(du, db)(x(l

⇤
k
(⇢1, ✓), ⇢1, ✓)) = Fk(⇢1, ✓)

which concludes the monotonicity of Fk(⇢, ✓) over (0, ⇢⇤) as
⇢1 and ⇢2 have been chosen arbitrarily.

Similarly, we can show that Fk(⇢4, ✓) > Fk(⇢3, ✓) >

Fk(⇢⇤, ✓) for any Hs
Hmin

L cos ✓ > ⇢4 > ⇢3 > ⇢
⇤. Therefore, we

can conclude that Fk(⇢, ✓) is strictly quasiconvex in ⇢ for both
Type I and Type II functions. In addition, from Proposition 4
proven in Appendix C, the optimal solution ⇢

⇤ is bounded in
0  ⇢ 

Hs
Hmin

L cos ✓. As a result, using Lemma 3, Fk(⇢, ✓)
admits a unique local minimizer ⇢⇤(✓) for each ✓.

APPENDIX C
PROOF OF PROPOSITION 4

Denote the elevation angle as '. Then, from geometric
relation as illustrated in Fig. 11, we have cos' = ⇢p

⇢2+H2
s

and sin' = Hsp
⇢2+H2

s
. As a result, (25) can be written as

Db(l, ⇢, ✓) = L
2 sin2 ✓+(L cos ✓� l cos')2+(l sin'�Hb)

2
.

The constraint in P
0

suggests that Hmin  l sin'  Hmax.
There are two cases for the optimal solution l

⇤(⇢, ✓) dis-
cussed as follows.

(i) l
⇤ sin' > Hmin: in this case, the following condition

holds
@Db

@l

���
l⇤(⇢,✓)

= 2(l � L cos ✓ cos'�Hb sin')
���
l⇤(⇢,✓)

< 0

because otherwise, the gradient in P
0

k
becomes positive as

@f̃

@l

���
l⇤(⇢,✓)

=
KX

k=1

⇣
@fk

@db

@db

@Db

@Db

@l
+

@fk

@du

@Du

@du

@Du

@l

⌘���
l⇤(⇢,✓)

⇥ I{x(l, ⇢, ✓) 2 Dk} > 0

which means that l
⇤(⇢, ✓) will not be the optimal solution.

(Recall that fk are increasing in the distances db = D
1/2
b and

du = D
1/2
u , and Du(l) = l

2). As a result, we have
Hmin

sin'
 l

⇤
< L cos ✓ cos'�Hb sin'

which arrives at

Hmin < L cos ✓ cos' sin'+Hb sin
2
'

= L cos ✓
⇢Hs +HbH

2
s

⇢2 +H2
s

leading to inequality

⇢
2
� µHs⇢+H

2
s (1� µHb) < 0 (29)

where µ = L cos ✓/Hmin. Knowing that ⇢ � 0, we can solve
(29) to obtain

⇢ <
Hs

2

⇣
µ+

p
µ2 � 4(1� µHb)

⌘

< Hsµ =
Hs

Hmin
L cos ✓.
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(ii) l⇤ sin' = Hmin: in this case

D
⇤
b (⇢, ✓) , Db(l

⇤(⇢, ✓), ⇢, ✓)

= L
2 sin2 ✓ + (L cos ✓ � ⇢

Hmin

Hs
)2

+ (Hmin �Hb)
2 (30)

D
⇤
u (⇢, ✓) , Du(l

⇤(⇢, ✓)) =
H

2
min

H2
s

(⇢2 +H
2
s ). (31)

Note that to fix the variable l(⇢, ✓) as a pre-determined
function of ⇢ and ✓ according to the relation l sin' = Hmin,
minimizing Fk(⇢, ✓) over ⇢ � 0 is an unconstrained problem.
This is because ⇢ � 0 will be automatically satisfied as a result
of (30)–(31). As a result, the optimality condition

@Fk

@⇢
=

@fk

@db

@db

@D
⇤
b

@D
⇤
b

@⇢
+

@fk

@du

@du

@D⇤
u

@D
⇤
u

@⇢
= 0

holds only if @D
⇤
b

@⇢
< 0, which leads to ⇢ <

Hs
Hmin

L cos ✓.
To conclude from the above two cases, the solution that

minimizes Fk(⇢, ✓) must satisfy ⇢
⇤(✓)  Hs

Hmin
L cos ✓.
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